Zeolites Regulate Nitrogen Release from Manure-Amended Soil

Kulasekaran Ramesh

Indian Institute of Soil Science, India

K.R. Islam*

Ohio State University South Centers at Piketon

Nitrogen Losses

Corn has high **N demand** and is relatively **inefficient**, recovering only **30 - 40%** of our annual fertilizer **N** input (Sims et al., 1995).

Most of the NO₃ leaching occurs during the fall and early spring months when the soil is fallow in the typical corn-soybean rotation of the U.S. Midwest (Owens et al, 1995).

About 18% of the N fertilizers applied leaves in the form of produce.

Remaining 82% is left behind

Concern relates to reactive N (nitrate) formation and environmental pollution

(http://people.oregonstate.edu/~muirp/eutrophi.htm)

Zeolite and organic matter amendment has recently been proposed as a novel approach to minimize reactive N formation and off-site movement from agricultural fields.

When Zeolite is mixed with poultry manure, after a week 42% of the ammonia volatilised from the manure was retained (Witter and Kirchmann 1989)

The name "zeolite" was introduced by the Swedish mineralogist Cronstedt (1756) for certain silicate minerals (Greek zeo = boil; lithos = stone).

Commercial deposits - Arizona, California, Idaho, Nevada, New Mexico, Oregon and Texas.

Most commonly mined are chabazite, **clinoptilolite**, and mordenite.

CLINOPTILOLITE is the most abundant zeolite in nature.

 $(Na, K, Ca)_{2-3} Al_3(Al, Si)_2 Si_{13} O_{36} - 12H_2O)$

Great affinity for NH₄⁺ and other ions

50 natural and 150 synthetic Zeolite
Have large reactive surface area
CEC 2.25 milliequivalent/g

Isothermal adsorption/desorption plot

Objectives

- Effect of different ratios of composted dairy manure and zeolite on N release
- Suitable extractant to measure N release from composted dairy manure and zeolite mixtures over time
- Composted dairy manure and zeolite effects on growth of buckwheat (as a test crop)

Materials and Methods

Experiment 1: Zeolite and composted dairy manure (CDM)

Design: Completely randomized design

- Soil + Zeolite (0) + CDM (0)
- Soil + Zeolite (1) + CDM (5)
- Soil + Zeolite (1) + CDM (10)

Incubation period: 7 days

Replications: 4

Experiment 2: Extractant used for soil + composted dairy manure + Zeolite mixtures

- Water extraction
- 1 M KCl extraction
- 2 M KCl extraction

Replications: 6

Experiment 3: Effect of soil + composted dairy manure (CDM) + zeolite on buckwheat

Factor A: Zeolite

Z₀: Control (Only soil)

 Z_1 : 2.5% of soil weight

 Z_2 : 5.0% of soil weight

 Z_3 : 10.0% of soil weight

Factor B: Composted dairy manure (CDM)

M₀: Control

 M_1 : CDM (50 kg N/ha)

M₂: CDM (100 kg N/ha)

 M_3 : CDM (150 kg N/ha)

Completely Randomized Design. Replications: 4

Results and Discussion

Experiment 1: Zeolite and composted dairy manure (CDM)

Design: Completely randomized design

- Soil + Zeolite (0) + CDM (0)
- Soil + Zeolite (1) + CDM (5)
- Soil + Zeolite (1) + CDM (10)

Incubation period: 7 days

Replications: 4

Experiment 2: Extractant used for soil + composted dairy manure + Zeolite mixtures

- Water extraction
- 1 M KCl extraction
- 2 M KCl extraction

Replications: 6

Water extractable ammonium from CDM-zeolite mixtures

KCI extractable ammonium from CDM-

Nitrate extracted from CDM-Zeolite mixtures

Experiment 3: Effect of soil + composted dairy manure (CDM) + zeolite on buckwheat

Factor A: Zeolite

Z₀: Control (Only soil)

 Z_1 : 2.5% of soil weight

 Z_2 : 5.0% of soil weight

 Z_3 : 10.0% of soil weight

Factor B: Composted dairy manure (CDM)

M₀: Control

 M_1 : CDM (50 kg N/ha)

 M_2 : CDM (100 kg N/ha)

 M_3 : CDM (150 kg N/ha)

Completely Randomized Design. Replications: 4

Effect of soil + CDM + zeolite on buckwheat

Conclusions

Soil fertilized or amended with organo-zeolite mixtures regulated N release

Ammonium adsorbed by Zeolite was not extractable by water

Zeolite minimized reactive N (NO₃-) formation

Conclusions......

Zeolite increased plant growth

Use of Zeolite is expected to reduce (1/3rd to ½) N fertilization

