Gypsum effects on carbon sequestration and soil quality

Clevenger, WB and Islam, KR

Ohio State University

2010 ASA/CSSA/SSSA International Meetings, Oct 31 – Nov 3, Long Beach, CA.
Materials and Methods

A no-till corn-soybean expt. with gypsum in RCB design (with 4 reps) was set-up on annually plowed Paulding clay at Defiance County research farm, northern Ohio in 2004.

Gypsum @ 0, 2.5, and 5 Mg/ha was applied in 2004 and 2007.

Composite soils at 0 - 15 cm depth were collected in 2004 and 2009, processed, and analyzed for biological, chemical, and physical properties.
Microbial biomass, total, active, and particulate organic C, total N, bulk density, total porosity, and aggregate stability were measured.

Soil C stocks were calculated by multiplying with concurrently measured ρ_b and equivalent mass (initial ρ_b) (Irfan et al. 2010).

Data were normalized to calculate a soil quality index using additive method.

SAS was used for data analysis.
Results and Discussion
NT effects

NT + gypsum effect

Microbial biomass (kg/ha)

<table>
<thead>
<tr>
<th>Gypsum (Mg/ha)</th>
<th>Microbial biomass (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2004 (initial pb)</td>
</tr>
<tr>
<td>1</td>
<td>2009 (antecedent pb)</td>
</tr>
<tr>
<td>2</td>
<td>2009 (equivalent soil mass)</td>
</tr>
</tbody>
</table>

2004 (initial pb) $C_{micseq} = 16.3$ kg/ha/yr
2009 (equivalent soil mass) $C_{micseq} = 42.9$ kg/ha/yr

NT + gypsum effect
$y = 1.69 + 0.49X + 1.1X^2$

$R^2 = 0.98^{***}$

NT effects

NT + gypsum effect
Gypsum (Mg/ha)

Total carbon (%)

2004 (initial pb)
2009 (antecedent pb)

TC_{seq} = 680 kg/ha/yr

2009 (equivalent soil mass)

TC_{seq} = 1219.3 kg/ha/yr

NT effects

NT + gypsum effect

NT + gypsum effect

2004 (initial pb)
2009 (antecedent pb)

2009 (equivalent soil mass)

TC_{seq} = 1219.3 kg/ha/yr

Gypsum (Mg/ha)

0 1 2 3 4 5

Total carbon (%)

0
20
40
60

2004 (initial pb)
2009 (antecedent pb)

TC_{seq} = 680 kg/ha/yr
Gypsum (Mg/ha)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Total nitrogen (%)

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
</table>

2004 (initial p_b)

2009 (antecedent p_b)

TN$_{seq}$ = 8.4 kg/ha/yr

2009 (equivalent soil mass)

TN$_{seq}$ = 137.5 kg/ha/yr

NT + gypsum effect

NT effects

NT + gypsum effect

2004 (initial p_b)

2009 (antecedent p_b)

TN$_{seq}$ = 8.4 kg/ha/yr

2009 (equivalent soil mass)

TN$_{seq}$ = 137.5 kg/ha/yr
Gypsum (Mg/ha)	Active carbon (Mg/ha)
0 | 0.0
1 | 0.5
2 | 1.0
3 | 1.5
4 | 2.0
5 | 2.5

2004 (initial \(p_b\))
2009 (antecedent \(p_b\))
NT effects

\[\text{AC}_{\text{seq}} = 48.2 \text{ kg/ha/yr} \]

2009 (equivalent soil mass)

\[\text{AC}_{\text{seq}} = 78 \text{ kg/ha/yr} \]

NT + gypsum effect

- NT effects
- NT + gypsum effect

2004 (initial \(p_b\))
2009 (antecedent \(p_b\))

2009 (equivalent soil mass)
Gypsum (Mg/ha)

Particulate organic carbon (Mg/ha)

2004 (initial pb)
2009 (antecedent pb)

POC\textsubscript{seq} = 420 kg/ha/yr

2009 (equivalent soil mass)
POC\textsubscript{seq} = 784 kg/ha/yr

NT + gypsum effect

NT effects

2004 (initial pb)
2009 (antecedent pb)
POC\textsubscript{seq} = 420 kg/ha/yr

2009 (equivalent soil mass)
POC\textsubscript{seq} = 784 kg/ha/yr
Gypsum (Mg/ha) vs Total porosity (%)

- **NT effects**
- **NT + gypsum effect**

Graph Details:
- **Equation:** $y = 42.5 + 1 \times X$
- **R^2:** 0.98***

- **Y-axis:** Total porosity (%)
- **X-axis:** Gypsum (Mg/ha)
- **Data Points:**
 - 2004: Red circles
 - 2009: Blue circles

Key Observations:
- The graph shows the relationship between gypsum application and total porosity over two years (2004 and 2009).
- The NT + gypsum effect shows a significant increase in porosity compared to NT effects.
- The linear relationship is described by the equation $y = 42.5 + 1 \times X$.
$$y = 58.6 + 5.9(1-\exp(-0.87*X))$$

$$R^2 = 0.99^{***}$$
NT + gypsum effect

NT effects

2004 (initial pb)
Mag formation = 58.2 kg/ha/yr

2009 (antecedent pb)

2009 (equivalent soil mass)
Mag formation = 83.5 kg/ha/yr
$y = 62.1 + 12.8X + 0.21X^2$

$R^2 = 0.97^{***}$

NT effects

NT + gypsum effect
Crop yield (Mg/ha) vs. Gypsum (Mg/ha)

- Corn: ns
- Soybean: ns
Conclusions

- Soil C sequestration in NT was impacted by gypsum especially @ 5 Mg/ha.

- Transitional NT increased C sequestration.

- Soil C sequestration was better predicted by using equivalent mass over variable mass.
• **Inductive** soil quality enhanced in NT by gypsum. Transitional NT **improved** soil quality properties.

• Both soil biological C sequestration and quality were impacted **more** by gypsum than chemical and physical C sequestration and quality

• However, **deductive** soil quality (e.g. crop yield) did not increase significantly by gypsum.