Gypsum effects on carbon sequestration and soil quality

Clevenger, WB and Islam, KR

Ohio State University

Materials and Methods

A no-till corn-soybean expt. with gypsum in RCB design (with 4 reps) was set-up on annually plowed Paulding clay at Defiance County research farm, northern Ohio in 2004.

Gypsum @ 0, 2.5, and 5 Mg/ha was applied in 2004 and 2007

Composite soils at 0 - 15 cm depth were collected in 2004 and 2009, processed, and analyzed for biological, chemical, and physical properties.

Microbial biomass, total, active, and particulate organic C, total N, bulk density, total porosity, and aggregate stability were measured.

Soil C stocks were calculated by multiplying with concurrently measured ρb and equivalent mass (initial ρb) (Irfan et al. 2010).

Data were normalized to calculate a soil quality index using additive method.

SAS was used for data analysis.

Results and Discussion

Conclusions

- Soil C <u>sequestration</u> in NT was impacted by gypsum especially @ 5 Mg/ha.
- Transitional NT increased C sequestration.
- Soil C sequestration was better <u>predicted</u> by using equivalent mass over <u>variable</u> mass.

- <u>Inductive</u> soil quality enhanced in NT by gypsum.
 Transitional NT <u>improved</u> soil quality properties.
- Both soil biological C sequestration and quality were impacted <u>more</u> by gypsum than chemical and physical C sequestration and quality
- However, <u>deductive</u> soil quality (e.g. crop yield) did not increase significantly by gypsum.