There is a need for farmers and growers to be able to evaluate soil quality in the field to help guide sustainability of agricultural management practices. Since soil organic matter (SOM) is the most widely acknowledged core indicator of soil quality, temporal changes in small but relatively active fractions of SOM may provide an early indication of soils’ functional capability in response to management practices. We report on a highly simplified method in which neutral dilute solutions of potassium permanganate (KMnO₄) reacts with most of the active fractions of SOM, changing the deep purple color of the solution to a light pink color. The lighter the color of the KMnO₄ solution after reacting with soil, the greater the amount of active organic matter content, and the better the quality of the soil. A 0.02M KMnO₄, air-dry soil (or 10 minutes of sunlight on a thin layer of crumbled soil spread in the field), and 2 minutes of shaking providing optimum ease, consistency, and sensitivity of results when using a simple color chart. Compared to total SOM, the active organic matter measured by the new procedure is closely related to crop yields and soil quality properties.

<table>
<thead>
<tr>
<th>Poor soil quality</th>
<th>Fair soil quality</th>
<th>Good soil quality</th>
<th>Excellent soil quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0 to 400 AOM lbs/A</td>
<td>> 400–800 AOM lbs/A</td>
<td>> 800–1600 AOM lbs/A</td>
<td>> 1600 AOM lbs/A</td>
</tr>
<tr>
<td>> 0–12 lbs available N/A</td>
<td>> 12–26 lbs available N/A</td>
<td>> 26–40 lbs available N/A</td>
<td>> 40 lbs available N/A</td>
</tr>
</tbody>
</table>

Color comparison of KMnO₄ solution after shaking with soil

Soil quality, active organic matter (AOM), and available N color chart

Copyright © 2008, The Ohio State University
Chemicals/Reagents: 0.2M KMnO$_4$ in 1M Calcium Chloride (pH 7.2). Adjust pH to 7.2 using 0.1M Sodium Hydroxide. The pH adjusted 0.2M KMnO$_4$ stock solution should be kept in a clean, dark bottle in a cool, dry place.

Contents of the 8-piece Soil Quality Test Kit:

1 Plastic Case
1 Laminated Instruction Sheet
1 Black Plastic Sheet (8” x 10”) to act as solar collector on which to dry a small sample of soil in the field, prior to testing
1 Glass Vial with a cap, in which to perform the test
1 Plastic Bottle of purple-colored reagent (keep away from direct light)
1 Small Plastic Dropper/Syringe (1-mL) to measure and dispense the reagent into the vial
1 Plastic Spoon with which to add the soil to the vial
1 Laminated Color Chart for comparison with your test results

It is also necessary to have a small amount of tap water and a small sample of the soil that you are going to test.

Directions for use:

Attention: Use air-dried soil. If sampling moist soil in the field, take a sub-sample (approximately 20 g or 5 scoops), crumble gently and spread thinly on a piece of black plastic sheet to air-dry for 10 minutes (preferably in direct sunlight). This will act as a solar collector for quick soil drying. Mix the crumbled soil two or three times during air-drying.

1—Add “2 droppers full” (2ml) of the Purple Reagent to the vial.
2—Fill the vial to the top of the tape mark (20-ml) with water and swirl to mix.
3—Add 1 level spoonful of air-dry soil (5-g) to the vial.
4—Cap on the vial and shake vigorously for 2 minutes (approximately 100 times per minute)
5—Let it stand upright for 10 minutes, to settle out the soil. Do not shake or disturb the tube. Keep it out of direct sunlight
6—Compare the color of the liquid (above the settled soil) to the Color Chart to determine the quality, the active organic matter and the plant available nitrogen of your soil sample.

The bleaching of the purple KMnO$_4$ color is proportional to the amount of active organic matter in soil. In other words, the greater the KMnO$_4$ color loss, the greater the amount of active organic matter content, and better the quality of soil.

EMPOWERMENT THROUGH EDUCATION

Visit Ohio State University Extension’s web site “Ohioline” at: http://ohioline.osu.edu

Ohio State University Extension embraces human diversity and is committed to ensuring that all research and related educational programs are available to clientele on a nondiscriminatory basis without regard to race, color, religion, sex, age, national origin, sexual orientation, gender identity or expression, disability, or veteran status. This statement is in accordance with United States Civil Rights Laws and the USDA.

Keith L. Smith, Ph.D., Associate Vice President for Agricultural Administration and Director, Ohio State University Extension
TDD No. 800-589-8292 (Ohio only) or 614-292-1868

Copyright © 2008, The Ohio State University
Now Available to Purchase

Soil Quality Field Test Kit

Developed by Ohio Agricultural Research and Development Center
and The Ohio State University

Soil Quality Test Kit — ORDER FORM

Quantity

_____ Complete Soil Quality Test Kit @ $30.00 = $____________

_____ Refill bottle of the Chemical Reagent @ $10.00 = $____________

SUBTOTAL $____________

Ohio tax exempt #_______________ or, Ohio residents add 7% $____________

_____ Shipping and handling @ $5.00 = $____________

TOTAL $____________

Make checks or money orders payable to The Ohio State University.

If paying by credit card:

_____ VISA _____ MC Card # ________________________________

Name on Card _______________________________ Expiration Date ______

Ship to:

Name__

Address 1__

Address 2__

City __________________________ State ______ Zip ______________

Mail completed order form with payment to:

The Ohio State University South Centers
Sarah Strausbaugh
1864 Shyville Road
Piketon, OH 45661

Telephone: 740-289-2071 Fax: 740-289-4591
E-mail: strausbaugh.54@osu.edu

THE OHIO STATE UNIVERSITY
COLLEGE OF FOOD, AGRICULTURAL,
AND ENVIRONMENTAL SCIENCES