Water Chemistry Overview

Matthew A. Smith
OSU South Centers
Extension Aquaculture Specialist

What's the #1 fish killer in aquaculture?

- Buy/hatch fish/shrimp + tap water + feed + harvest
- > Profits!?

Unfortunately not...

Knowing your water is one of the best things you can do!

Beginner farmer?.....

- Learn all you can about water chemistry
- Talk to Extension and other farmers
- Be a lifelong student
- Do your due diligence
 - .edu!!!

Unfortunately not...

If you're already in business......

- Buy healthy and hardy fish from a reputable dealer!
- Properly temper your fish!
- Check your parameters often and at key periods of time!
- Know your animal's upper/lower/optimal water quality limits!
- Maintain good records!
- Always be a lifelong student!

Key Periods of Time

- 1) Prevent loss of fish at stocking
- Prevent loss during highest feeding rates (usually summer outdoors)
- Prevent fish stress during harvest to minimize loss during transport and restocking

So what parameters are important?

Really depends on your system, species, density, etc.!

Ponds?

- Dissolved oxygen (DO)
- Temp.
- pH
- Total ammonia-nitrogen (TAN)
- Nitrite
- Alkalinity
- Hardness

Other parameters might be necessary

- ✓ Carbon dioxide
- ✓ Iron
- ✓ Chloride
- ✓ Hydrogen sulfide

So what parameters are important?

Really depends on your system, species, density, etc.!

Tanks (RAS)?

- Dissolved oxygen (DO)
- Temp.
- pH
- Total ammonia-nitrogen (TAN)
- Nitrite
- Carbon dioxide
- Alkalinity
- Iron (initially and then periodically)

So what parameters are important?

Really depends on your system, species, density, etc.!

Aquaponic System?

- Dissolved oxygen (DO)
- Temp.
- pH
- Total ammonia-nitrogen (TAN)
- Nitrite & Nitrate
- Alkalinity
- Carbon dioxide

in aquaponics

- Phosphorus
- ✓ Iron
- ✓ Calcium
- ✓ Potassium

Can't I just check it every once in awhile???

Once again, unfortunately not...

Daily testing!

Bi-weekly testing!

Bi-monthly testing!

Monthly testing!

Annual testing!

Yellow Perch Pond Example

Let's say you check your pH, temperature, and TAN in the **morning**. Say the levels are

Morning

8.4 pH

72°F

0.25 mg/L TAN

0.03 mg/L un-ion.

30 mg/L Alkalinity

Well that's not bad!

Yellow Perch Pond Example

Let's say you check your pH, temperature, and TAN in the evening. Say the

levels are

Evening

9.8 pH

75°F

0.25 mg/L TAN

0.19 mg/L un-ion.

30 mg/L Alkalinity

Well that's **not** as good!

Yellow Perch Pond Example

My TAN didn't change! What happened?

It's because of that complex interaction I mentioned The series of events went as followed

- DO is lowest in the morning
- DO increases as photosynthesis starts back

- Removal of CO2 **INCREASES** the pH due to the removal of acid
- Increase in pH (& temp) shifts more of the TAN into the un-ionized form
- Increase = stressed fish

<u>Morning</u>					
8.4 pH					
72°F					
0.25 TAN					
0.03 NH3 (un-ion.)					

ts more of the TAN
<u>Morning</u>
8.4 pH
72°F
0.25 TAN
0.03 NH3 (un-ion.)

		hrough	
			1
ce O2 a	as a by	v-prod	uct

Evening

9.8 pH

0.25 TAN

75°F

Un-ionized ammonia calculator

TAN, pH, and temperature need to be recorded AT THE SAME TIME in order to determine the amount present in your system

Table 2 Percentage Un-ionized Ammonia in Aqueous Solution by pH Value and Temperature

Calculated from data in Emerson, et. al*

						ulateu i		nperature							
рН	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
7.0	0.11	0.13	0.16	0.18	0.22	0.25	0.29	0.34	0.39	0.46	0.52	0.60	0.69	0.80	0.91
7.2	0.18	0.21	0.25	0.29	0.34	0.40	0.46	0.54	0.62	0.82	0.83	0.96	1.10	1.26	1.44
7.4	0.29	0.34	0.40	0.46	0.54	0.63	0.73	0.85	0.98	1.14	1.31	1.50	1.73	1.98	2.26
7.6	0.45	0.53	0.63	0.73	0.86	1.00	1.16	1.34	1.55	1.79	2.06	2.36	2.71	3.10	3.53
7.8	0.72	0.84	0.99	1.16	1.35	1.57	1.82	2.11	2.44	2.81	3.22	3.70	4.23	4.82	5.48
8.0	1.13	1.33	1.56	1.82	2.12	2.47	2.86	3.30	3.81	4.38	5.02	5.74	6.54	7.43	8.42
8.2	1.79	2.10	2.45	2.86	3.32	3.85	4.45	5.14	5.90	6.76	7.72	8.80	9.98	11.29	12.72
8.4	2.80	3.28	3.83	4.45	5.17	5.97	6.88	7.90	9.04	10.31	11.71	13.26	14.95	16.78	18.77
8.6	4.37	5.10	5.93	6.88	7.95	9.14	10.48	11.97	13.61	15.41	17.37	19.50	21.78	24.22	26.80
8.8	6.75	7.85	9.09	10.48	12.04	13.76	15.66	17.73	19.98	22.41	25.00	27.74	30.62	33.62	36.72
9.0	10.30	11.90	13.68	15.65	17.82	20.18	22.73	25.46	28.36	31.40	34.56	37.83	41.16	44.53	
9.2	15.39	17.63	20.08	22.73	25.58	28.61	31.80	35.12	38.55	42.04	45.57	49.09	52.58		47.91
9.4	22.38	25.33	28.47	31.80	35.26	38.84	42.49	46.18	49.85	53.48	57.02	60.45		55.99	59.31
9.6	31.36	34.96	38.38	42.49	46.33	50.16	53.94	57.62	61.17	64.56	67.77	70.78	63.73	66.85	69.79
9.8	42.00	46.00	50.00	53.94	57.78	61.47	64.99	68.31	71.40	74.28	76.92	79.33	73.58	76.17	78.55
10.0	53.44	57.45	61.31	64.98	68.44	71.66	74.63	77.35	79.83	82.07	84.08	85.88	81.53 87.49	83.51	85.30
10.2	64.53	68.15	71.52	74.63	77.46	80.03	82.34	84.41	86.25	87.88	89.33	90.60	91.73	88.92 92.71	90.19 93.58

^{*} Emerson, K., R. C. Russo, R.E. Lund, and R.V. Thurston. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Res. Board Can., 32:2379-2383.

Dissolved oxygen, carbon dioxide, pH changes in ponds over 24 hours

	Change							
Time	DO	CO2	рН					
Daylight	Increases	Decreases	Increases					
Nighttime	Decreases	Increases	Decreases					

Tucker 1984

Morning

8.4 pH

72°F

0.25 TAN

0.03 NH3 (un-ion.)

Evening

9.8 pH

75°F

0.25 TAN

0.19 NH3 (un-ion.)

Questions?

Matthew A. Smith
OSU South Centers
Piketon, OH 45661