

IOWA STATE UNIVERSITY
Extension and Outreach

Water Quality

Physical

Chemical

Biological

Fish Health

Check Early & Check Often

- Monitor and record fish behavior daily
 - Monitor fish for lesions or erratic swimming behavior
 - Inform a fish health professional immediately regarding abnormal fish behavior

Common Disease Issues Aeromonas Columnaris

Water Source

HAVE YOUR WATER TESTED BEFORE SETTING UP A SYSTEM!!!

Municipal Water – De-chlorinate

May contain chlorine or chloramine – <u>TOXIC to fish</u>

Well Water - Aerate

- May contain pesticides, contaminants, or toxins
- Will likely be low DO and high CO₂

Rain Water – Re-mineralize

- Low hardness and may be affected by acid rain
- May need to add ocean salt for fish osmotic balance (0.25 1 ppt)

Surface Water - Disinfect

- May contain pesticides, contaminants, or toxins
- May contain diseases, algae, fungi, fecal coliforms, etc.

IOWA STATE UNIVERSITY

Water Quality

Daily Testing

- Dissolved oxygen (DO)
- Temperature
- pH

Twice Weekly Testing

- Total ammonia nitrogen (TAN)
- **Nitrite** Nitrate
- **Alkalinity**

Twice Monthly Testing

- **Phosphorus**
- Calcium hardness
- Iron
- Potassium

Fish Food has an Impact on Water Quality

Temperature

- Affects the metabolism of most aquatic organisms
 - Q10 Rule
 - Each species has optimal range for growth
 - Affects chemical parameters in water
 - Dissolved Oxygen
 - Ammonia Nitrogen

Affects All Biological Processes

- Nitrification
 - >pH 7.5 ideal
 - Stops < 6.0
- High pH plants display nutrient deficiencies
- High pH ammonia toxicity

1	
2	
3	ACID
4	
5	
6	
7	NEUTRAL
8	
9	
10	
11	
12	ALKALI
13	
14	

Optimal pH 6.5 to 7.2

Salinity

A measure of the salt concentration of the water

- Important for osmoregulation
- * NaCl salt to relieve stress and nitrite poisoning.

- Freshwater
 - fish lose salts through gills
- Saltwater
 - fish lose water through gills

Dissolved Oxygen

The amount of oxygen available for respiration in water

Used in the breakdown of energy-storing molecules

- Has a natural saturation equilibrium in water
 - Temperature DO level at saturation
 - Salinity DO level at saturation
- Minimum DO requirements
 - Warmwater 2-3 mg/L
 - Coldwater 5 mg/L

• gas bubble disease

Chlorine

A toxic gas typically used in water treatment and wastewater treatment plants to disinfect water before and after human use

- Biosecurity disinfect aquaculture equipment
 - Bleach Sodium hypochlorite (NaOCI)
 - Oxidizing agent
 - Chloramines
 - Crayfish and shrimp less susceptible
- Removed by
 - Carbon filtration
 - Sodium sulfite
 - Heavy aeration

Nitrogen Cycle

N₂ gas is also created through denitrification under anoxic conditions Volatilized from water by aeration

Bio-Filters

Live bacteria need time and resources to establish

- ~ 1 month
- Ammonia
- Nitrite
- Alkalinity
- Easy to kill

Ammonia Nitrogen

- Primary metabolite of protein
 - Used in household cleaners very toxic
 - Ammonia (NH₃) toxic
 - Ammonium (NH₄+) non-toxic

High pH and temperature make the proportion as NH₃ higher, and more toxic

					Temperature						100	gestle Villa	4	
рН	42.0 (°F)	46.4	50.0	53.6	57.2	60.8	64.4	68.0	71.6	75.2	78.8	82.4	86.0	89.6
pn	6 (°C)	8	10	12	14	16	18	20	22	24	26	28	30	32
7.0	.0013	.0016	.0018	.0022	.0025	.0029	.0034	.0039	.0046	.0052	.0060	.0069	.0080	.0093
7.2	.0021	.0025	.0029	.0034	.0040	.0046	.0054	.0062	.0072	.0083	.0096	.0110	.0126	.0150
7.4	.0034	.0040	.0046	.0054	.0063	.0073	.0085	.0098	.0114	.0131	.0150	.0173	.0198	.0236
7.6	.0053	.0063	.0073	.0086	.0100	.0116	.0134	.0155	.0179	.0206	.0236	.0271	.0310	.0369
7.8	.0084	.0099	.0116	.0135	.0157	.0182	.0211	.0244	.0281	.0322	.0370	.0423	.0482	.0572
8.0	.0133	.0156	.0182	.0212	.0247	.0286	.0330	.0381	.0438	.0502	.0574	.0654	.0743	.0877
8.2	.0210	.0245	.0286	.0332	.0385	.0445	.0514	.0590	.0676	.0772	.0880	.0998	.1129	.1322
8.4	.0328	.0383	.0445	.0517	.0597	.0688	.0790	.0904	.1031	.1171	.1326	.1495	.1678	.1948
8.6	.0510	.0593	.0688	.0795	.0914	.1048	.1197	.1361	.1541	.1737	.1950	.2178	.2422	.2768
8.8	.0785	.0909	.1048	.1204	.1376	.1566	.1773	.1998	.2241	.2500	.2774	.3062	.3362	.3776
9.0	.1190	.1368	.1565	.1782	.2018	.2273	.2546	.2836	.3140	.3456	.3783	.4116	.4453	.4902
9.2	.1763	.2008	.2273	.2558	.2861	.3180	.3512	.3855	.4204	.4557	.4909	.5258	.5599	.6038
9.4	.2533	.2847	.3180	.3526	.3884	.4249	.4618	.4985	.5348	.5702	.6045	.6373	.6685	.7072
9.6	.3496	.3868	.4249	.4633	.5016	.5394	.5762	.6117	.6456	.6777	.7078	.7358	.7617	.7929
9.8	.4600	.5000	.5394	.5778	.6147	.6499	.6831	.7140	.7428	.7692	.7933	.8153	.8351	.8585
10.0	.5745	.6131	.6498	.6844	.7166	.7463	.7735	.7983	.8207	.8408	.8588	.8749	.8892	.9058
10.2	.6815	.7152	.7463	.7746	.8003	.8234	.8441	.8625	.8788	.8933	.9060	.9173	.9271	.9389

Table 1. Relative percentage of total ammonia nitrogen (TAN) in the toxic, unionized form at a given temperature and pH

pH & NH₄+
Temp.
7.0
8.0
8.0
Ammonia
8.4
8.6
8.8
Toxicity
9.0

4		Temperature (°C)										
	pН	8	12	16	20	24	28	32				
	7.0	0.2	0.2	0.3	0.4	0.6	0.8	1.0				
	8.0	1.6	2.1	2.9	3.8	5.0	6.6	8.8				
	8.2	2.5	3.3	4.5	5.9	7.7	10.0	13.2				
	8.4	3.9	5.2	6.9	9.1	11.6	15.0	19.5				
	8.6	6.0	7.9	10.6	13.7	17.3	21.8	27.7				
	8.8	9.2	12.0	15.8	20.1	24.9	30.7	37.8				
	9.0	13.8	17.8	22.9	28.5	34.4	41.2	49.0				
	9.2	20.4	25.8	32.0	38.7	45.4	52.6	60.4				
	9.4	30.0	35.5	42.7	50.0	56.9	63.8	70.7				
	9.6	39.2	46.5	54.1	61.3	67.6	73.6	79.				
	9.8	50.5	58.1	65.2	71.5	76.8	81.6					
	10.0	61.7	68.5	74.8	79.9	84.0	87.5	95				
	10.2	71.9	77.5	82.4	86.3	89.3	91.8					

IOWA STATE UNIVERSITY

Nitrite Nitrogen (NO2-)

- Secondary metabolite of protein
 - Causes brown-blood disease
 - Alters hemoglobin
 - Less oxygen transfer

- NaCl salt
- -10 Cl^{-} to 1 NO_2^{-} ratio
- 4.5 lbs of NaCl = 1 ppm Cl⁻ per acrefoot of water

Nitrate Nitrogen (NO3-)

- Major Nitrogen fertilizer
 - Algal blooms
- Least harmful nitrogen ion
 - Can be toxic at extremely high concentrations
- Readily taken up by plants
 - Wetland mitigation
 - Aquaponics

Alkalinity

- Measure of pH buffering capacity of the water
 - Quantitative measure of carbonates in the water
 - Minimum requirement of 40 mg/L (ppm) to stimulate a phytoplankton bloom
 - Provides CO₂ for plant growth

Agricultural Limestone CaCO₃

Hardness

- Surrogate measure of calcium concentration in water
 - Measures cations (positive ions) in water
 - Limestone may contain both Ca and Mg

Sodium Bicarbonate NaHCO₃

Suppliers

- HACH
 - http://www.hach.com/
- LaMotte
 - http://www.lamotte.com/
- Yellow Springs Instruments (YSI)
 - http://www.ysi.com/index.php
- Aquatic Eco-Systems, Inc.
 - http://www.aquaticeco.com/
- Southern Aquaculture Supply
 - http://southernaquaculturesupply.com/

Effluent Management

Discharge is regulated by the Ohio Department of Natural Resources (OH DNR)

Check with your state natural resource agency or extension service for details

Nutrient Management

- Effluent mitigation for EPA compliance
- Reduce expense of effluent filtration
- O Maintains high water quality for fish

Reduced Water

Consumption

• Recirculating Aquaculture Systems

O5-15% daily exchange

OAquaponics

01.4% daily exchange

• Water lost in waste purging

OPotential co-products

IOWA STATE UNIVERSITY

How does it work?

Fish Tanks

IOWA STATE UNIVERSITY Extension and Outreach

Solid Waste Removal

Solids must be removed quickly for optimal water

quality

Tank design is critical

 Double standpipe design helps remove waste in round tanks

Feed Consistently

Feed = Fertilizer

Multiple rearing tanks, staggered production

- four tilapia rearing tanks
- Stock & Harvest every 6 weeks
- All-in/all-out production (per tank)

IOWA STATE UNIVERSITY

Feed Consistently

- Single rearing tank with multiple size groups of fish
 - 6-month growout tank would have 6 size groups of fish
 - monthly grading and harvest of fish
 - restock equal number of fingerlings

Stock

Harvest & Stock

Harvest & Stock

Filter Tanks

- Biofilter Material
 Vol. = 0.063 m³
 - Bio-FillTM
 - $-800 \text{ m}^2/\text{m}^3$
 - Total filtration
 surface area ~
 51.6 m²
- Solids filter pads

Mechanical Filtration

OMinimal clogging and automatic cleaning are ideal, but expensive

- Options
 - Filter pads
 - Settling chambers/Clarifiers
 - Sand and bead filters
 - Screen filters

IOWA STATE UNIVERSITY Extension and Outreach

Solids Removal

- Approximately 25% of the feed given to fish is excreted as solid waste, based on dry weight.
 - If solids are not removed:
 - Depletes dissolved oxygen
 - Clogs pipes
 - Kills nitrifying bacteria
 - Causes ammonia problems

Prevent Biofouling

- Use oversized pipes to reduce the effects of biofouling
 - dissolved organic matter promote the growth of filamentous bacteria restricts flow within pipes

Ensure adequate biofiltration

Surface Area

Living Space for the Nitrifying Bacteria

Competition for that Space

Food

- ammonia or nitrite
- > 0.07 mg / L

Good Living Conditions

Dissolved Oxygen going into the biofilter > 4 mg / L

- pH 7.2 8.8
- Alkalinity > 200 mg / L as CaCO₃

IOWA STATE UNIVERSITY

Aeration

- The fish, plants and bacteria in aquaponic systems require adequate levels of dissolved oxygen maximum health and growth.
 - -Maintain DO at >5 mg/liter

Plant

Plant Trays

IOWA STATE UNIVERSITY

Keep Plant Density Consistent

Plants provide critical filtration!!

Single rearing tank with multiple size groups of plants

- 6-week growout time for plants will require
- Harvest plants weekly or bi-weekly
- restock equal number of seedlings

SOW SEEDS

Week 1

Week 2

TRANSPLANT

Week 3

Week 4

Week 5

Week 6

HARVEST

IOWA STATE UNIVERSITY

Sumps

- Water Collection
- Pumping
- Nutrient supplementation
 - Iron
 - Calcium
 - Alkalinity

Disinfection Tools

Ultraviolet Irradiation

Ozone

IOWA STATE UNIVERSITY Extension and Outreach