FISH WATER QUALITY MANAGEMENT IN RAS & AQUAPONICS

D. Allen Pattillo • Aquaculture Extension Specialist
Department of Natural Resource Ecology and Management

IOWA STATE UNIVERSITY
Extension and Outreach
Water Quality

- Physical
- Chemical
- Biological
Check Early & Check Often

• Monitor and record fish behavior daily
 – Monitor fish for lesions or erratic swimming behavior
 – Inform a fish health professional immediately regarding abnormal fish behavior
Common Disease Issues

Aeromonas

Columnaris
HAVE YOUR WATER TESTED
BEFORE SETTING UP A SYSTEM!!!

Municipal Water – De-chlorinate
- May contain chlorine or chloramine – **TOXIC to fish**

Well Water - Aerate
- May contain pesticides, contaminants, or toxins
- Will likely be low DO and high CO₂

Rain Water – Re-mineralize
- Low hardness and may be affected by acid rain
- May need to add ocean salt for fish osmotic balance (0.25 – 1 ppt)

Surface Water - Disinfect
- May contain pesticides, contaminants, or toxins
- May contain diseases, algae, fungi, fecal coliforms, etc.
Water Quality

Daily Testing
- Dissolved oxygen (DO)
- Temperature
- pH

Twice Weekly Testing
- Total ammonia nitrogen (TAN)
- Nitrite
- Nitrate
- Alkalinity

Twice Monthly Testing
- Phosphorus
- Iron
- Calcium hardness
- Potassium

IOWA STATE UNIVERSITY
Extension and Outreach
Fish Food has an Impact on Water Quality

- 0.25 - 1.0 kg Oxygen
- 1 kg Feed
- 0.18 - 0.4 kg Alkalinity
- 0.35 – 1.38 kg CO₂
- 0.25 - 0.5 kg Waste Solids
- 0.025 - 0.055 kg NH₃ & NH₄
Temperature

- Affects the metabolism of most aquatic organisms
 - Q10 Rule
 - Each species has optimal range for growth
 - Affects chemical parameters in water
 - Dissolved Oxygen
 - Ammonia Nitrogen
pH

Affects All Biological Processes

• Nitrification
 – >pH 7.5 ideal
 – Stops < 6.0

• High pH plants display nutrient deficiencies

• High pH ammonia toxicity
Optimal pH 6.5 to 7.2
Salinity

A measure of the salt concentration of the water

• Important for osmoregulation

 – Freshwater
 • fish lose salts through gills
 – Saltwater
 • fish lose water through gills

* NaCl salt to relieve stress and nitrite poisoning.
Dissolved Oxygen

The amount of oxygen available for respiration in water

- Used in the breakdown of energy-storing molecules
- Has a natural saturation equilibrium in water
 - Temperature ↑ DO level at saturation ↓
 - Salinity ↑ DO level at saturation ↓
- Minimum DO requirements
 - Warmwater 2-3 mg/L
 - Coldwater 5 mg/L
- Supersaturation (>100%)
 - gas bubble disease
A toxic gas typically used in water treatment and wastewater treatment plants to disinfect water before and after human use

Biosecurity - disinfect aquaculture equipment
- Bleach – Sodium hypochlorite (NaOCl)
- Oxidizing agent
- Chloramines
- Crayfish and shrimp less susceptible

Removed by
- Carbon filtration
- Sodium sulfite
- Heavy aeration
N₂ gas is also created through denitrification under anoxic conditions. Volatilized from water by aeration.
Bio-Filters

Live bacteria need time and resources to establish

- ~ 1 month
- Ammonia
- Nitrite
- Alkalinity
- Easy to kill

[Graph showing the timeline for ammonia (TAN), nitrite (NO₂), and nitrate (NO₃) levels in mg l⁻¹ over 40 days.]
Ammonia Nitrogen

- Primary metabolite of protein
- Used in household cleaners – very toxic
 - Ammonia (NH₃) - toxic
 - Ammonium (NH₄⁺) – non-toxic

High pH and temperature make the proportion of NH₃ higher, and more toxic.
Table 1. Relative percentage of total ammonia nitrogen (TAN) in the toxic, unionized form at a given temperature and pH

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>8.0</td>
<td>1.6</td>
<td>2.1</td>
<td>2.9</td>
<td>3.8</td>
<td>5.0</td>
<td>6.6</td>
<td>8.8</td>
</tr>
<tr>
<td>8.2</td>
<td>2.5</td>
<td>3.3</td>
<td>4.5</td>
<td>5.9</td>
<td>7.7</td>
<td>10.0</td>
<td>13.2</td>
</tr>
<tr>
<td>8.4</td>
<td>3.9</td>
<td>5.2</td>
<td>6.9</td>
<td>9.1</td>
<td>11.6</td>
<td>15.0</td>
<td>19.5</td>
</tr>
<tr>
<td>8.6</td>
<td>6.0</td>
<td>7.9</td>
<td>10.6</td>
<td>13.7</td>
<td>17.3</td>
<td>21.8</td>
<td>27.7</td>
</tr>
<tr>
<td>8.8</td>
<td>9.2</td>
<td>12.0</td>
<td>15.8</td>
<td>20.1</td>
<td>24.9</td>
<td>30.7</td>
<td>37.8</td>
</tr>
<tr>
<td>9.0</td>
<td>13.8</td>
<td>17.8</td>
<td>22.9</td>
<td>28.5</td>
<td>34.4</td>
<td>41.2</td>
<td>49.0</td>
</tr>
<tr>
<td>9.2</td>
<td>20.4</td>
<td>25.8</td>
<td>32.0</td>
<td>38.7</td>
<td>45.4</td>
<td>52.6</td>
<td>60.4</td>
</tr>
<tr>
<td>9.4</td>
<td>30.0</td>
<td>35.5</td>
<td>42.7</td>
<td>50.0</td>
<td>56.9</td>
<td>63.8</td>
<td>70.7</td>
</tr>
<tr>
<td>9.6</td>
<td>39.2</td>
<td>46.5</td>
<td>54.1</td>
<td>61.3</td>
<td>67.6</td>
<td>73.6</td>
<td>79.4</td>
</tr>
<tr>
<td>9.8</td>
<td>50.5</td>
<td>58.1</td>
<td>65.2</td>
<td>71.5</td>
<td>76.8</td>
<td>81.6</td>
<td>86.0</td>
</tr>
<tr>
<td>10.0</td>
<td>61.7</td>
<td>68.5</td>
<td>74.8</td>
<td>79.9</td>
<td>84.0</td>
<td>87.5</td>
<td>91.8</td>
</tr>
<tr>
<td>10.2</td>
<td>71.9</td>
<td>77.5</td>
<td>82.4</td>
<td>86.3</td>
<td>89.3</td>
<td>91.8</td>
<td></td>
</tr>
</tbody>
</table>
Nitrite Nitrogen (NO$_2^-$)

- Secondary metabolite of protein
 - Causes brown-blood disease
 - Alters hemoglobin
 - Less oxygen transfer
 - Effects weakened by addition of chloride ions
 - NaCl salt
 - 10 Cl$^-$ to 1 NO$_2^-$ ratio
 - 4.5 lbs of NaCl = 1 ppm Cl$^-$ per acrefoot of water
Nitrate Nitrogen (NO₃⁻)

- Major Nitrogen fertilizer
 - Algal blooms
- Least harmful nitrogen ion
 - Can be toxic at extremely high concentrations
- Readily taken up by plants
 - Wetland mitigation
 - Aquaponics
Alkalinity

- Measure of pH buffering capacity of the water
 - Quantitative measure of carbonates in the water
 - Minimum requirement of 40 mg/L (ppm) to stimulate a phytoplankton bloom
 - Provides CO₂ for plant growth

Hardness

- Surrogate measure of calcium concentration in water
- Measures cations (positive ions) in water
- Limestone may contain both Ca and Mg

Agricultural Limestone
CaCO₃

Sodium Bicarbonate
NaHCO₃
Suppliers

• HACH
 – http://www.hach.com/
• LaMotte
 – http://www.lamotte.com/
• Yellow Springs Instruments (YSI)
• Aquatic Eco-Systems, Inc.
 – http://www.aquaticeco.com/
• Southern Aquaculture Supply
 – http://southernaquaculturesupply.com/
Effluent Management

Discharge is regulated by the Ohio Department of Natural Resources (OH DNR)

Check with your state natural resource agency or extension service for details
Nutrient Management

- Effluent mitigation for EPA compliance
- Reduce expense of effluent filtration
- Maintains high water quality for fish
Reduced Water Consumption

- **Recirculating Aquaculture Systems**
 - 5-15% daily exchange

- **Aquaponics**
 - 1.4% daily exchange
 - Water lost in waste purging
 - Potential co-products
ISU System
How does it work?

1 - Fish Culture Tank
2 - Mechanical and Biological Filter
3 - Hydroponic Unit
4 - Sump Tank with Pump
5 - Aerator/Blower

Aquaculture Unit Hydroponic Unit

Flow Direction
Fish Tanks
Solid Waste Removal

- Solids must be removed quickly for optimal water quality
 - Tank design is critical
 - Double standpipe design helps remove waste in round tanks
Feed Consistently

Feed = Fertilizer

- Multiple rearing tanks, staggered production
 - four tilapia rearing tanks
 - Stock & Harvest every 6 weeks
 - All-in/all-out production (per tank)
Feed Consistently

- Single rearing tank with multiple size groups of fish
 - 6-month growout tank would have 6 size groups of fish
 - monthly grading and harvest of fish
 - restock equal number of fingerlings
Filter Tanks

- **Biofilter Material**
 - Vol. = 0.063 m3
 - Bio-Fill™
 - 800 m2/m3
 - Total filtration surface area ~ 51.6 m2

- **Solids filter pads**
Minimal clogging and automatic cleaning are ideal, but expensive.

Options:
- Filter pads
- Settling chambers/Clarifiers
- Sand and bead filters
- Screen filters
Solids Removal

- Approximately **25% of the feed given to fish is excreted as solid waste**, based on dry weight.
 - If solids are not removed:
 - Depletes dissolved oxygen
 - Clogs pipes
 - Kills nitrifying bacteria
 - Causes ammonia problems
Prevent Biofouling

• Use **oversized pipes** to reduce the effects of biofouling
 – dissolved organic matter promote the growth of filamentous bacteria restricts flow within pipes
Ensure adequate biofiltration

- **Surface Area**
 - Living Space for the Nitrifying Bacteria
 - Competition for that Space

- **Food**
 - ammonia or nitrite
 - > 0.07 mg / L

- **Good Living Conditions**
 - Dissolved Oxygen going into the biofilter > 4 mg / L
 - pH 7.2 – 8.8
 - Alkalinity > 200 mg / L as CaCO₃
Aeration

• The fish, plants and bacteria in aquaponic systems require adequate levels of dissolved oxygen maximum health and growth.

– Maintain DO at >5 mg/liter
Plant Trays
Plant Trays
Plants provide critical filtration!!

Single rearing tank with multiple size groups of plants

- 6-week growout time for plants will require
- Harvest plants weekly or bi-weekly
- restock equal number of seedlings
SOW SEEDS

Week 1
Week 2

TRANSPLANT

Week 3
Week 4
Week 5
Week 6

HARVEST
Sumps

- Water Collection
- Pumping
- Nutrient supplementation
 - Iron
 - Calcium
 - Alkalinity
Disinfection Tools

Ultraviolet Irradiation

Ozone
Species Grown

Nile Tilapia
Oreochromis niloticus

Barramundi
Lates calcarifer

Money-Maker Tomato

Buttercrunch Bibb Lettuce

Italian Large leaf Basil
Contact Info:
D. Allen Pattillo
Aquaculture Extension
515-294-8616
Pattillo@iastate.edu
- www.NCRAC.org
- http://www.nrem.iastate.edu/fisheries/

IOWA STATE UNIVERSITY
Extension and Outreach