Aquaponics: Plant Production

Charlie Shultz

Aquaculture Boot Camp 2
OSU South Center
March 11, 2017

Crop Families

- Compositae
 - Lettuce*, endive*
- Cruciferae (cole)
 - Broccoli, cabbage*, cauliflower, brussel sprouts, pak choi*, mustard*, turnips, radish
- Cucurbits (melon)
 - Cucumber*, squash*, melon*
- Lamiaceae
 - Mint*, basil*, lavender, thyme, oregano

- Chenopodiaceae
 - Spinach, beet, chard*
- Solanaceous (nightshade)
 - Tomato*, pepper*, potato
- Liliaceae (lily)
 - Onions*, leek, garlic, chives*
- Gramineae
 - Corn
- Leguminosae (legume)
 - Beans*, peas

Nutrients Required for Plant Growth

- Macronutrients
 - C Carbon*
 - O Oxygen*
 - H Hydrogen*
 - N Nitrogen
 - K Potassium**
 - Ca Calcium**
 - Mg Magnesium
 - P Phosphorus
 - S Sulfur

- Micronutrients
 - Cl Chlorine
 - Fe Iron**
 - Mn Manganese
 - B Boron
 - Zn Zinc
 - Cu Copper
 - Mo Molybdenum

* Supplied by CO₂ and H₂O ** Typically must be supplemented

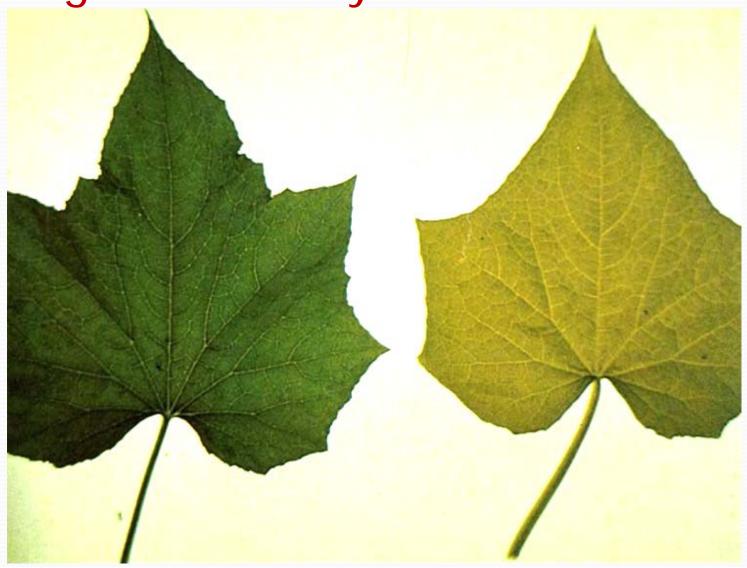
NPK Nitrogen, Potassium, Phosphorous

- N Nitrogen shoots
- P Phosphorous roots
- K Potassium flowers and fruit

- Use 9-45-15 for seedling production
 - Promotes strong root formation

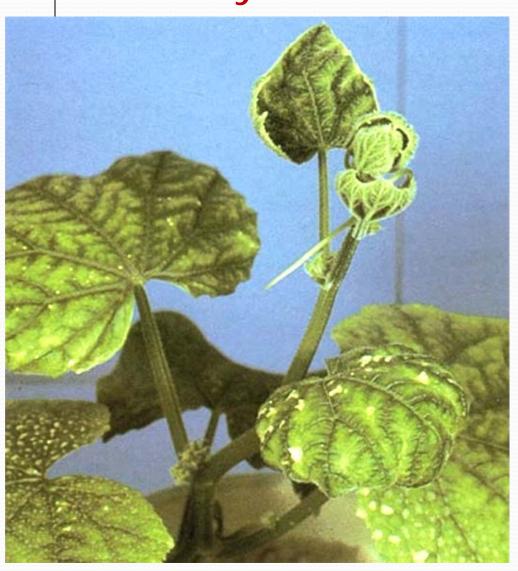
Identifying Nutrient Deficiencies

- Mobile Nutrients (N,P, K, Mg, Mo, Cl)
 - Will show symptoms first on older leaves
- Immobile Nutrients (B, Ca, Cu, Fe, Mn, Ni, S, Zn)
 - Will show symptoms on younger leaves.


GET TO KNOW YOUR EXTENSION AGENTS!!

Send samples for Tissue Analysis

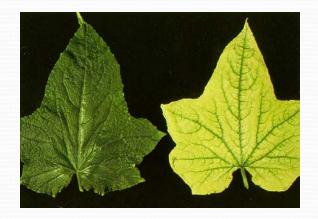
Nutrient deficiencies in aquaponics



Phosphorous Deficiency

Calcium Peficiency

Potassium Deficiency


Magnesium deficiency

Other Nutrient Disorders

Excessive Soluble Salts

Iron Deficiency

Manganese Deficiency

Molybdenum Deficiency

Lighting Sources

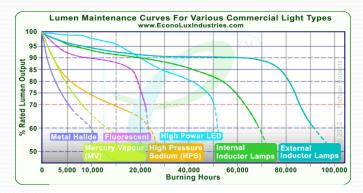
- High Intensity Discharge Lighting (H.I.D.)
 - Metal Halide (MH)
 - High Pressure Sodium (HPS)
 - Combination Arc (Dual-Arc)
- Fluorescent
 - T5, T8, T12, CFL
- Light Emitting Diodes (L.E.D.)
 - Red, Blue, White, UV
- Plasma
- Induction
- Incandescent
 - Generally Not Appropriate

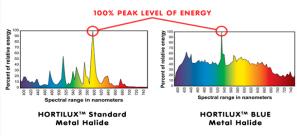
High Intensity Discharge Lighting

- Workhorse Equipment
 - Ballast, Reflector have long lifespan
 - Generally rugged
 - Work on generators and 240v
 - Brand names Sun System, HydroFarm
- Popular
 - Technology 25+ years in use
 - Used to grow plants by education, commercial, R&D and hobbyists
 - Readily Available and serviced throughout N.A., Europe, Australia, Asia
 - Most widely accepted plant lighting across varied concerns

H.I.D. Lighting Components

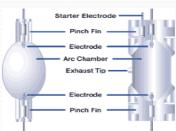
- Ballast
 - Accepts current from wall outlet / circuit
 - Delivers altered current to lamp
 - Specific wattage, bulb type
 - Electronic vs. Magnetic ballast
- Reflector
 - Vertically / Horizontally houses bulb
 - Air Cooled / Open Fixture
 - Directly attached or remotely wired to ballast
- Bulb
 - Metal Halide, High Pressure Sodium, Dual Arc
 - Discharges current across specialized arc
 - Some bulbs must be fired in horizontal position

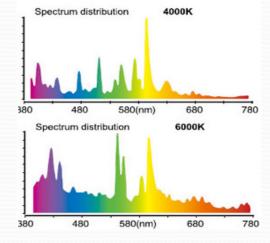


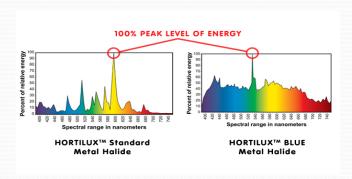


H.I.D. Drawbacks

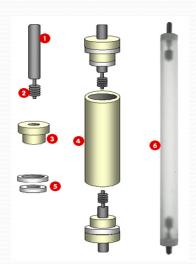
- Bulb Lifespan
 - MH and HPS short life
- Bulb Toxicity
 - Mercury and other heavy metals
 - Breakage over food crop?
- Generated Heat
- Efficiency
 - Magnetic Ballasts achieve .8 factor
 - Electronic ballasts claim to have .9+ factor
 - Bulb produces wasted energy
- Operation Considerations
 - Hot Start
 - Power Supply
 - UL Listing
 - Required for educational use

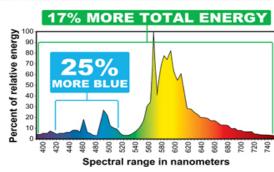




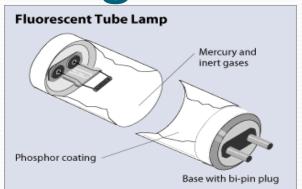

Metal Halide vs. High Pressure Sodium

- Metal Halide
 - Burning Position
 - Universal or Horizontal
 - Box will state
 - Must be in enclosed fixture for UL listing
 - Cool Burning
 - Deeper Blue, U.V.
 - Often used for reefs
 - 6400K,10,000K,20,000K
 - Excellent for vegetative crops
 - Warm Burning
 - Daylight
 - Used to flower plants on MH ballast
 - Phosphorous coating
 - Creates red spectrum
 - Burns off in 6 months





MH vs. HPS cont.,


- High Pressure Sodium
 - Most Widely Used Bulb for Flowering
 - Red Spectrum 2100K
 - Standard
 - Parking lot lamps
 - Yellow/Orange
 - Cheap
 - Enhanced Spectrum HPS
 - Added metals produce extra blue
 - Costly

Fluorescent Lighting

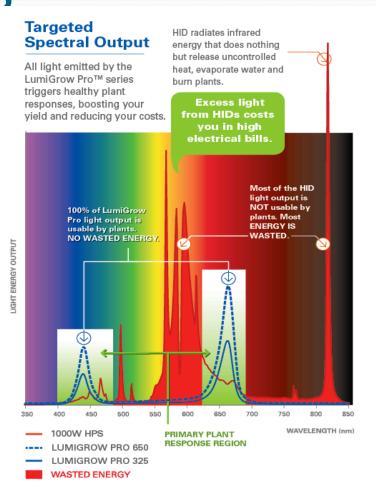
- Simple Components
 - Fixture plugs into wall
 - Ballast on board
 - Several bulb sizes
 - Excellent lifespan (2 years)
- Varying Sizes of Fixtures
 - 2',3',4'
 - Multiple Bulb Arrays
 - T5
 - HO, VHO
- Drawbacks
 - Low Output
 - Does not penetrate plant canopy
 - Bulb Toxicity
 - Cannot be put into waste stream

Plasma and Induction Lighting

- Plasma
 - New technology on the market
 - May require red supplement
- Induction
 - Invented by Tesla
 - No moving parts
 - No direct electrical contact
 - Magnetic field excites bulb

LED Lighting

- Light Emitting Diodes
 - Limited Spectrum
 - Red, Blue, White diodes
 - Plays to the tune of PAR
 - Many Wattages
 - Many manufactures
 - Efficient use of electricity
- Arrays
 - Small to Large
 - Many sizes for all applications
 - Expensive to cheap home made
 - Arrange diodes on panels
 - Panels have heat sinks
 - Some panels are dimmable / adjustable spectrum



LED Pros and Cons

- Pro
 - Long unit life span
 - LumiGrow claims 7 years
 - No toxic chemicals exposed to crops
 - Little Heat
 - No Wasted Electricity
 - Adjustable Spectrum
 - LumiGrow and StealthGrow
 - Low power consumption
 - LumiGrow claims 33owLED will compete w/1000wHP!
- Con
 - Expensive
 - 1000w equivalent costs upwards of USD\$1400
 - Replacement
 - Entire unite must be replaced (ballast, fans)
 - Low penetration of plant canopy
 - Hanging distance
 - Supplemental can be upwards of 6 feet
 - For stand alone lighting 18 inches max
 - Limited Spectrum
 - 46onm 68onm

Greenhouses

- Consider supplemental light
 - Day length elongation
 - DLI targets
- Recommend HID to start
 - Ballast on board
 - HPS or MH with LED
- LED may improve in future

Indoor Gardens

- HID continue to be the preferred hobbyist choice for bringing mature plants to harvest
- Some consumers choose fluorescents for smaller specimens, seedlings and vegetative crops.

Load Considerations

- Master Controllers
 - 120V OT 240V
 - Master time sequence
 - Delayed starts
 - Protections
- Dedicated Service Lines
 - 24ov line from panel box
 - More efficient
 - Max 1x1000w on a 15amp 12ov circuit
 - 20amp 24ov can service 4x1000w

Production Methods

Staggered

Allows weekly harvests

Facilitates market development

Maintains uniform nutrient uptake

Batch

Easier management

Can deplete nutrients

Seedling Production

- Greenhouse or shade house
 Protected area
- Keep it clean
 Metal tables
 Install drain if concrete floor
 Weed barrier if gravel floor
- Planting media and dead plant material can harbor insects and disease

Planting Media

- Peat potting mix (i.e. Promix BX)
 - Inexpensive
 - Readably available
 - Contains micronutrients for seedling growth
 - Can have pythium spores
- Jiffy peat pellets
 - Expensive
 - Easy to use
 - Can have pythium spores

- Oasis root cubes
 - Expensive
 - Requires additional nutrients
 - Dries out quickly in greenhouse
- Rockwool
 - Expensive
 - Non-biodegradable

Planting Media

- Soilless potting mix
- Coir (coconut fibers) + Vermiculite


```
60\% + 40\% mix
```

Free from pythium

Requires fertilizer supplementation

Labor required to prepare mix

Watering Equipment

- Fogg-It Nozzle
 - 4 gpm

- Dramm 400 Water Breaker
 - 400 tiny streams of water

Watering Equipment

- Hozon Siphon Mixer
 - 1:16 proportioning device

Plant Potential Production

Variety	Density (plants/m²)	Area planted (m²)	Yield (ea.)	Cases (24/case)
Sierra leaf	20	26.7	535	22.3
Parris Island romaine	16	26.7	428	17.8
Total		53.5	963	40.1

- Production of both varieties was superior in cool winter months
- Production declined when water temperatures were warm and *Pythium* killed roots which suppressed plant growth.

Production Value

Variety	Density (plants/m ²)	Growth Period (weeks)	Value (\$/head)	Value (\$/m²)	Value (\$/m²/week)
Parris Island romaine	16	4	2.00	32.00	8.00
Sierra leaf	20	4	1.50	30.00	7.50
Boston Bibb	30	3	1.00	30.00	10.00

 High density and frequent harvests has higher value even when individual value is low.

Other greens

Variety	Density (plants/m ²)	Growth Period (weeks)	Yield (kg/m²)	Value (\$/kg)	Value (\$/m²)	Value (\$/m²/we ek)
Pak choi	30	3	8.00	3.30	26.40	8.8o
Kale	30	3	0.89	6.59	5.86	1.95
Collards	30	3	0.45	6.59	2.96	1.48
Swiss Chard	30	3	1.44	6.59	9.49	3.16
Basil	16	4	1.80	22.05	39.60	9.90

 Leafy green crops take advantage of abundant nitrogen in the system and easy nutrient management.

Production Management pH maintained at 7.0

KOH Ca(OH),

Chelated iron

```
2 ppm (mg/liter)
Chelated iron is 13% pure so multiply by 7.7
(i.e., 15.4 mg of product gives 2 mg of iron)
```

- Manage net tanks with cleaning schedule to control nitrate levels
- Biological pest control
- Integrated pest management

Lettuce

- High nitrogen levels promotes leafy growth
- Short production cycle generates steady cash flow
- Strong demand

Lettuce Production Cycle

Greenhouse Phase

- Week 1
 - Day o: seed
- Week 2
 - Day 7: thin flat
 - Day 7, 10, 13: fertilize
- Week 3
 - Day 14, 16, 19: fertilize

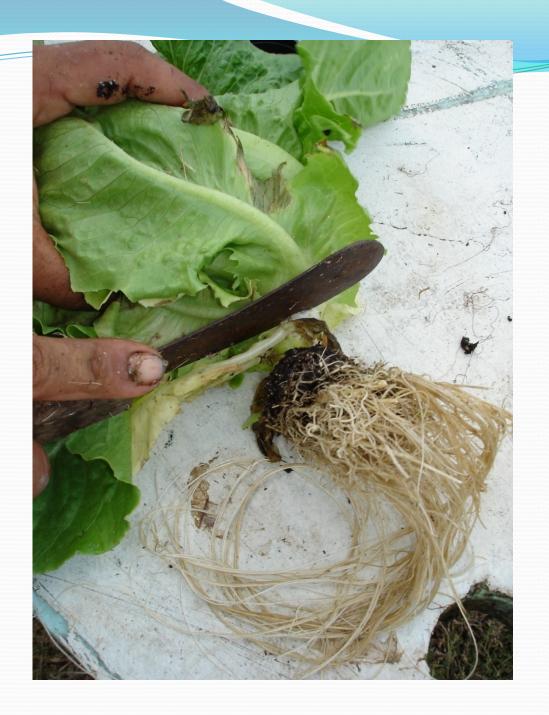
Aquaponic System Phase

- Week 4
 - Day 21: transplant to aquaponic system
 - Day 23, 26: spray with BT
- Week 5
 - Day 30, 33: Spray with BT
- Week 6
 - Day 37, 40: Spray with BT
- Week 7
 - Day 42, 45: Spray with BT
 - Day 49: Harvest

Lettuce Harvest Procedures • Move sheets with mature plants to one end of the raft

- Lift sheets to harvesting stand or harvest in place
- Cut off lettuce stalk with a sharp knife and remove lower poor quality leaves
- Discard any poor quality lettuce
- Pack 24 lettuce heads to a box
- Weigh several randomly selected boxes minus the empty box weight to calculate total harvest weight and average weight per head of lettuce.
- Count box to determine total lettuce number and percentage of marketable yield

Lettuce Harvest Procedures Lettuce that is not distributed immediately should be


- Lettuce that is not distributed immediately should be stored in a moist refrigerated room
- Surface of the sheets should be washed with dechlorinated water to remove any dead leaves and quickly returned to hydroponic tanks
- Plants roots and growing media should be removed from net pots and discarded
- Cleaned net pots should be disinfected by soaking them in water containing bleach, rinsed and then dried before they are used again

Basil Production

- 48 plants/sheet
- Staggered production
- Complete harvest recommended
- Cut and come again at 4 week intervals is alternative
 Grow for 3 months
 Harvest (cut) three times then remove
 Reduces survival and increases pythium
- Seedlings3 weeks in greenhouse

Basil

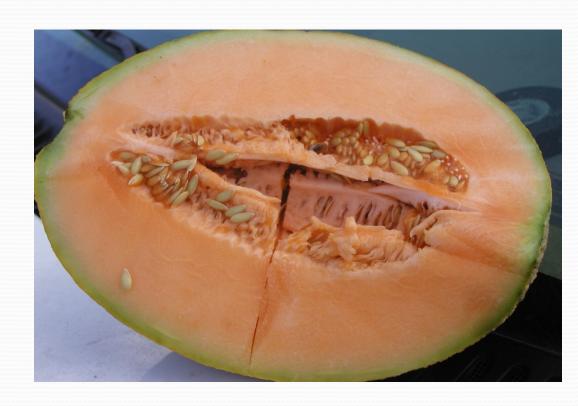
- Genovese
- 16/m², 48 per raft
- Market value \$10.00/lb
- Value \$515/m²/yr \$110,210/system/yr

Okra Production

- 5-month production cycle
- Continuous flowering after 4 weeks
- Frequent harvests required for tender pods
 Delayed harvest produces unmarketable product
- Seedlings
 - 2-3 weeks in greenhouse

Okra

- Clemson spineless
- 3.7/m², 11 per raft
- 5 months
- Market price \$0.50/lb)
- Value \$15/m²/yr \$3,210/system/yr


Melon Production

- 2 plants/sheet
 - Use one side only and allow plants to run on ground Plant other side with companion crop
 - Or construct narrow hydroponic tanks
- < 3 month crop</p>
- Plants die as melons ripen on the vine
- Seedlings
 - 1-2 weeks in greenhouse

Cantaloupe • Jaipur

- 0.67/m², 2 per raft
- Market value \$3.99 each
- Value

Each: \$46.28/m²/yr \$9,900/system/yr

The best biological control is the farmer's shadow

Plant Pest and Disease Control

- No synthetic chemical pesticides
- Biological controls used to control insects
- IPM to reduce pest pressure

Pythium spp.

- Root fungus
- No IPM control
- Low temperature reduces growth and impact of some *Pythium* species
- Select resistant varieties

Biological Controls Dipel Soap Sp

Bacteria Controls caterpillars

Soap Spray

Fungus

Controls soft bodied insects (white flies, aphids)


Armicarb

Potassium bicarbonate

> Controls fungus, powdery mildew.

Changes pH of leaf surface making it unsuitable for

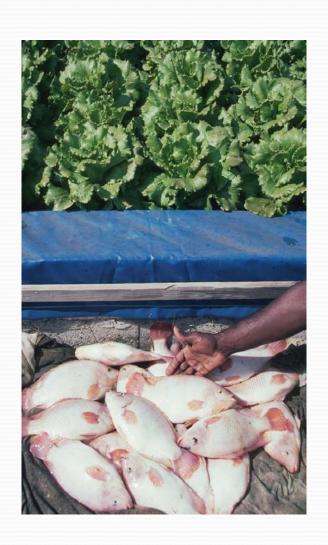
Application of Dipel with gas powered backpack sprayer

Soaps and Oils

- Coats insect causing death
- Kills all insects
 Including beneficial
 Ladybugs, wasps, bees

Barriers

Shade cloth Tangle foot


Bug Light

 Attracts/kills moths and night flying insects

May draw insects from far away

Thank You!

Charlie Shultz

aquaponics@hotmail.com