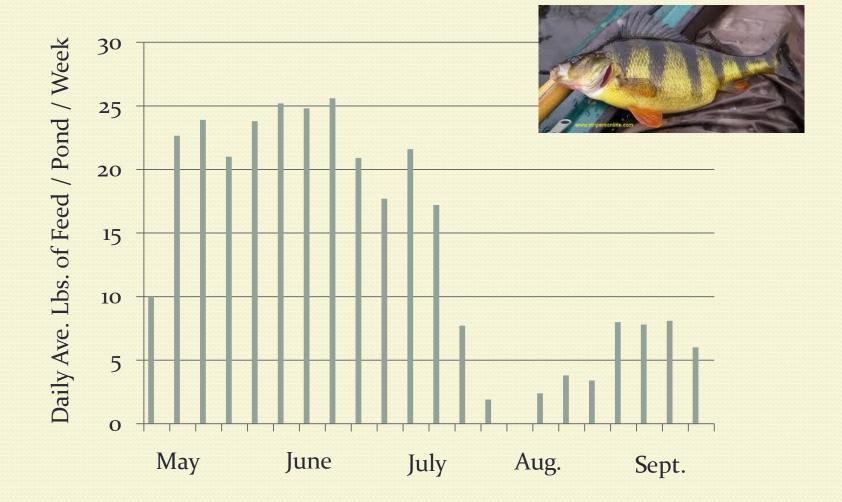
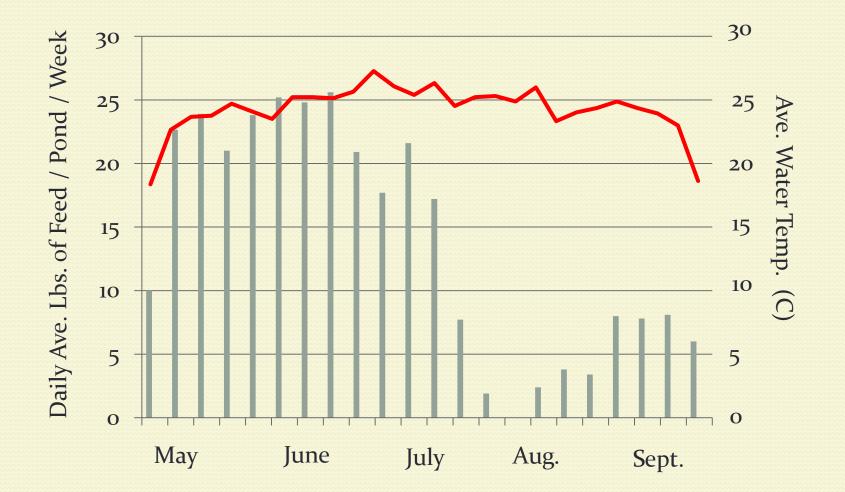
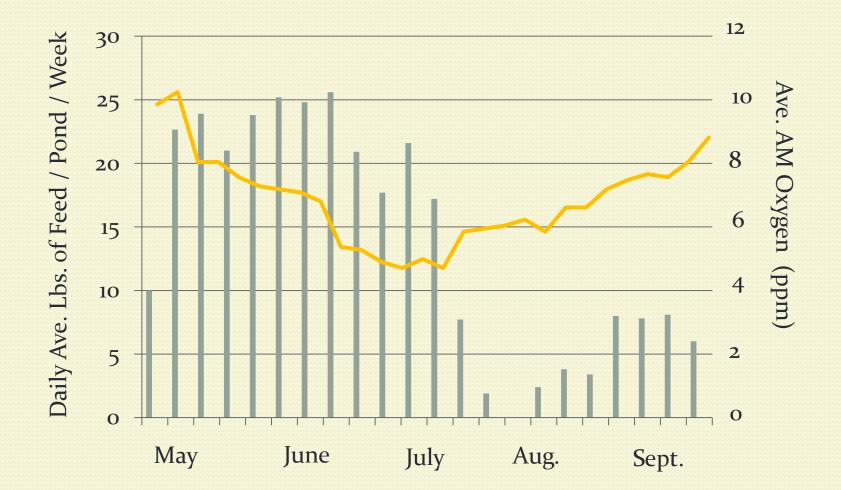
Un-ionized Ammonia an Insidious Troublemaker in Culture Ponds

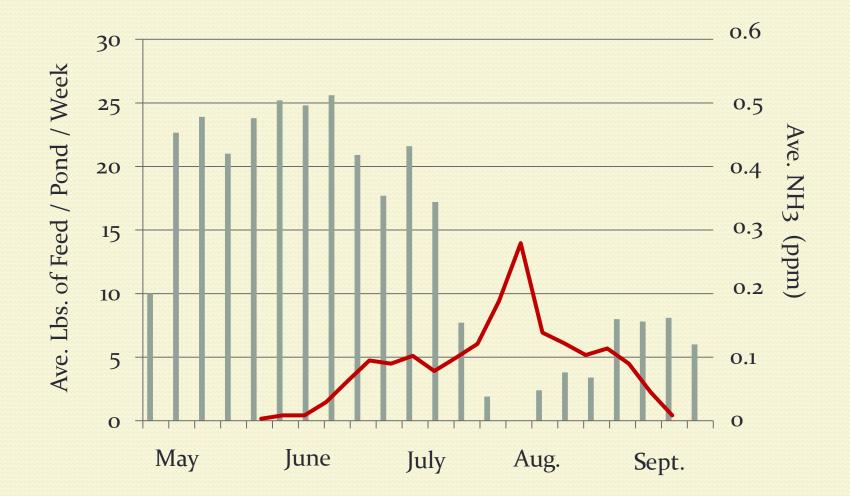

William E. Lynch Jr. Co-Owner, Manager Millcreek Perch Farm Marysville, OH

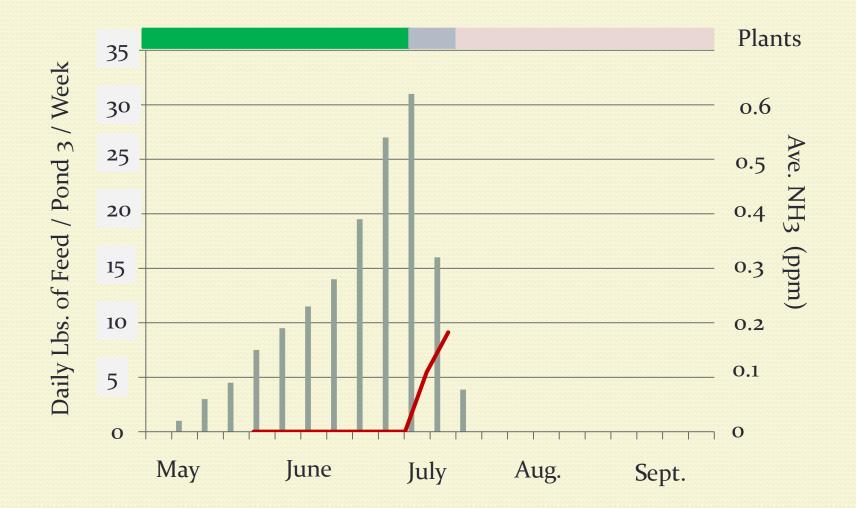
Industry Advisory Council North Central Regional Aquaculture Center


Ammonia Compounds

- Total Ammonia (TAN)
 - Ionized ammonia (NH₄⁺)
 - Not toxic at typical pond levels, can be at high levels.
 - Un-ionized ammonia (NH₃)
 - Gill damage at 0.06 ppm.
 - Reduced feeding at 0.11 ppm.
 - Mortality above 0.6 ppm.
 - Some species variation.
 - Levels increase with higher pH and water temperatures.

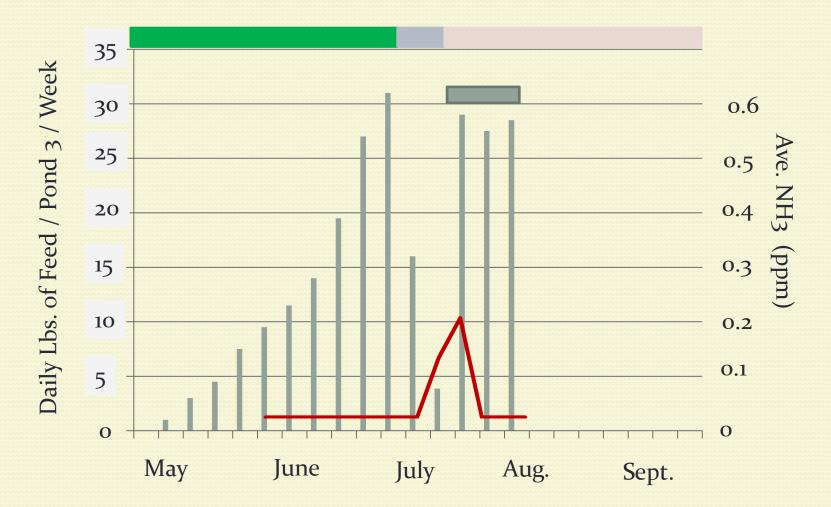

A Real World Example (2012)


Water Temperature?


Low AM Oxygen?

Un-ionized Ammonia?

2013 Example - Fingerlings



Remedial Action


- Cut back feed to nearly zero. They had stopped eating anyway.
- Began exchanging water between the 1 acre production pond and an adjacent 1 acre fish-free pond choked with submerged plants. 70 gallons per minute.
- Ran paddlewheel at night.
- Pond with fish became de-stratified because exchange water originated at bottom in deep end.
- Restarted feed slowly 3 days after beginning water exchange. Fish returned to aggressive feeding on day 5.
- Goal: Lower production pond ammonia levels by moving 1) high ammonia water from production pond into vegetated pond, and 2) ammonia free water back into production pond.

2013 Example - Fingerlings

Water Exchange

2013 Example - Fingerlings

Determining Unionized Ammonia Levels

- Total Ammonia (TAN)
 - Colormetric test kit, Colormetric meter, or dip stick strips

- Un-ionized ammonia (NH₃)
 - Must be interpreted from a chart or calculated from a website.
 - To do so, need measurement of total ammonia, water temperature, and pH.

Total Ammonia Sources

- Decaying Non-Feed Organic Matter
 - Dead plants, fish, invertebrates etc.
 - Algal crashes especially problematic. Quick ammonia spike.
- Feed Eaten
 - Metabolism of consumed feed results in the discharge of ammonia via the gills and;
 - Decomposition of solid feces also produces ammonia.
- Uneaten Feed
 - Decomposition of uneaten feed produces significant amounts of ammonia.

Factors Affecting Total Ammonia Levels

- Aerobic bacteria efficiency
 - Oxygen-loving aerobic bacteria within the nitrogen cycle are very efficient at converting total ammonia to eventually nitrates. Again, no total ammonia = no unionized ammonia.
 - Amount of oxygenated substrate for aerobic bacteria
 - Aquatic Plants stems and leaves provide substrate
 - Pond bottom aerobic bacteria form dense colonies on oxygenated pond bottom materials.
 - A lack of oxygen along the bottom can severely decrease the conversion of ammonia to nitrates, which could increase un-ionized ammonia levels under certain conditions.
 - Bottom oxygen needed 24/7.

Effect of pH and Water

Temperature

• Values are % of total ammonia nitrogen (TAN) in the toxic, unionized form.

pН	20 C	25 C	30 C
7.5	1.24%	1.77%	2.48%
7.8	2. 44%	3.47%	4.84%
8.1	4.76%	6.69%	9.21%
8.4	9.07%	12.50%	16.80%
8.7	16.60%	22.20%	28.8%
9.0	28.40%	36.30%	44.6%
9.3	33.85%	42.34%	50.80%

Factors Affecting Toxic Un-ionized Ammonia Levels

- pH has a large impact on portion of total ammonia that is in the un-ionized ammonia form – water temperature less so.
 - 0.25 ppm total ammonia (measured)

pН	20 C	25 C	30 C	
7.5	0.003	0.004	0.006	
7.8	0.006	0.008	0.012	
8.1	0.012	0.017	0.023	
8.4	0.023	0.031	0.042	
8.7	0.041	0.055	0.072	
9.0	0.071	0.090	0.131	
9.3	0.110	0.133	0.154	

Factors Affecting Un-ionized Toxic Ammonia Levels

- pH has a large impact on un-ionized ammonia levels water temperature less so.
 - 0.25 ppm total ammonia

1.0 ppm total ammonia

pН	20 C	25 C	30 C	pН	20 C	25 C	30 C
7.5	0.003	0.004	0.006	7.5	0.012	0.018	0.025
7.8	0.006	0.008	0.012	7.8	0.024	0.035	0.048
8.1	0.012	0.017	0.023	8.1	0.047	0.067	0.092
8.4	0.023	0.031	0.042	8.4	0.090	0.125	0.168
8.7	0.041	0.055	0.072	8.7	0.166	0.222	0.287
9.0	0.071	0.090	0.131	9.0	0.284	0.362	0.446
9.3	0.110	0.133	0.154	9.3	0.442	0.531	0.616

Factors Affecting Un-ionized Toxic Ammonia Levels

- pH has a large impact on un-ionized ammonia levels water temperature less so.
 - 0.25 ppm total ammonia

1.0 ppm total ammonia

pН	20 C	25 C	30 C	pН	20 C	25 C	30 C
7.5	0.003	0.004	0.006	7.5	0.012	0.018	0.025
7.8	0.006	0.008	0.012	7.8	0.024	0.035	0.048
8.1	0.012	0.017	0.023	8.1	0.047	0.067	0.092
8.4	0.023	0.031	0.042	8.4	0.090	0.125	0.168
8.7	0.041	0.055	0.072	8.7	0.166	0.222	0.287
9.0	0.071	0.090	0.131	9.0	0.284	0.362	0.446
9.3	0.110	0.133	0.154	9.3	0.442	0.531	0.616

What To Do If My Un-ionized Ammonia Levels Start to Rise?

- Reduce / Stop Feeding
 - Will not reduce un-ionized ammonia levels quickly, but keeps you from worsening the problem.
- Exchange Water
 - Realistic only in smaller ponds. Per our example, helped us in a one acre pond.
- Read SRAC's "Managing Ammonia in Fish Ponds"
 - Reviews other options, but explains why they are slow to work or don't work

⁽c) In the second se

Prevention is Key!

- Set Realistic Production Goals!
 - A NCR pond's waste management capability can support the feed required to grow about 3000 pounds of fish per acre.
 - This equals about 22-25 pounds of feed per day per acre. Exception: flow-thru ponds.
 - Avoid the temptation to feed more to boost production. Eventually the pond's bacteria & plant community will be unable to handle the wastes, water quality will degrade, fish will stop eating, and death could follow.

Prevention is Key!

- Encourage / Tolerate a Diverse Aquatic Plant Community!
 - Combination of algae & submerged plants.
 - 15-20% Coverage.
 - Improves aerobic bacteria abundance & efficiency due to increased surface area on plant stems & leaves
 - Enhances conversion of ammonia into harmless nitrates.
 - Helps keep un-ionized ammonia levels at very low levels if not zero.

Prevention is Key!

- Use Bottom Bubble Aeration!
 - Prevents water column stratification.
 - Better oxygen profile, including oxygen along the pond bottom.
 - Improves aerobic bacteria abundance & efficiency. Slows muck build-up.
 - Enhances conversion of ammonia into harmless nitrates.
 - Helps keep un-ionized ammonia levels at very low levels if not zero.

However...

- Can management strategies be developed to allow more fish production per acre without raising ammonia / unionized ammonia levels?
- Enter stage right . . The NCRAC Research Project!

