Optimizing Design Criteria for COMMERCIAL Recirculating Aquaculture Systems

By Steven Van Gorder

FRESH-CULTURE SYSTEMS, INC PROVIDING RECIRCULATING AQUACULTURE SYSTEMS AND TECHNOLOGIES SINCE 1984

FRESH-CULTURE SYSTEMS, Inc.
1984 -2014

FCS – the design, construction and sale of RAS systems for 30 years.
CURRENT "DEVELOPMENT" PRIORITIES FOR RECIRCULATING AQUACULTURE SYSTEMS (RAS)

1) “Sustainable” Recirc. AquaSystems (SRAS)
 - Low-Head Systems
 - Low-Energy Systems
 - Zero effluent
 - Low-Trophic Level Species Choices – Tilapia
 - Alternative Feeds (less fish meal)
 - Aquaponics

2) BioFloc (shrimp and tilapia)

3) Greenwater Systems

COMMERCIAL AQUAPONIC PRODUCTION IN RECIRCULATING AQUACULTURE SYSTEMS (RAS)

But it’s also important to differentiate between ...

- Hobbyist Systems / Small-Scale RAS
- Commercial Recirculating Aquaculture Systems
 - “Entry-level” Commercial-Scale
 - RAS for Tilapia vs High-Valued Species
 - Vertical integration
 hatchery/nursery/processing/marketing/hydroponics
 - Industrial-Scale Systems -
 “intensive” vs “super-intensive” systems
"Is it possible to garden the water like we garden the soil?"

Organic Gardening and Farming Pioneer Bob Rodale, 1976

Home Aquaculture:
- Low-Head Designs
- New Species
- Integrated ecologically-sound low-cost methods

Home Aquaculture – Small-Scale and Hobbyist Systems

Some of the 1st RAS aquaponic designs anywhere

Backyard Systems Basement Systems Attached Greenhouse Systems

Community-Scale Greenhouse Systems
“SUSTAINABLE AQUACULTURE”
Fertilization/Polyculture

Organically Fertilized Polycultures of low trophic-level species

Early “greenwater” and “Biofloc” systems

“SUSTAINABLE AQUACULTURE”
Multi-Trophic Polycultures

Catfish / Buffalo / Carp
Tilapia
Macrobrachium
Rainbow trout
Red Swamp Crawfish
“SUSTAINABLE AQUACULTURE”
Low-Energy Designs – Temperature Control

Season-extending Solar Domes

Greenhouses

“SUSTAINABLE AQUACULTURE”
Aquaponics/Community-Scale Designs
“SUSTAINABLE AQUACULTURE”
Low-Energy Designs – RBC’s & Aerators

paddlewheel-driven rbc’s / 55 gallon drum clarifiers / efficient aeration
“SUSTAINABLE AQUACULTURE”
The Rodale Backyard Fish Farm

“SUSTAINABLE AQUACULTURE
Small-Scale Cage Culture Systems
Growing Interest in “Sustainable Aquaculture” 1976-1983

BioSphere Project - Arizona

University of Arizona
Kevin Fitzsimmons

New Alchemy Institute

Rodale Aquaculture Conference

“SUSTAINABLE AQUACULTURE”
2014 - Small-Scale Aquaponics

There are dozens of examples of hobbyist and small-scale aquaponics designs.

Unless you’re selling these systems, this is not a form of commercial aquaponics
DEFINING COMMERCIAL RECIRCULATING AQUACULTURE
DEFINING “COMMERCIAL-SCALE” RAS
(Minimum Requirements)

• Recirculating Aquaculture Systems can include either:
 ➢ Dedicated Fish Production in closed systems, or
 ➢ Aquaponics, combining hydroponic vegetable production with finfish production.

• Aquaponics can be further sub-divided into 2 categories:
 ➢ Hydroponic vegetable production balanced exactly with the fish biomass and the feed input levels.
 ➢ Independent fish production and hydroponics systems, using the RAS waste stream as the nutrient source for the vegetable production.

DEFINING “COMMERCIAL-SCALE” RAS

❖ Commercial-scale “balanced” aquaponics
 ▪ By far the most common design alternative being considered
 ▪ The fish are often used only as a source of nutrients
 ▪ Almost exclusively “tilapia culture systems”
 ▪ Others are more qualified to discuss this topic
DEFINING “COMMERCIAL-SCALE” RAS

- Independent fish culture / hydroponic systems
 - Commercial quantities of fish and/or vegetables
 - Hydroponic nutrients derived from the fish waste stream... for whatever level of hydroponics is desired
 - Must maintain state-of-the-art water quality control systems
 - Should be able to support a variety of high-value fish species

DEFINING “COMMERCIAL-SCALE” RAS

(Minimum Requirements)

- Many believe that Recirculating Aquaculture Systems, including Aquaponics, cannot be commercially viable unless pursued on an “industrial-scale”.

 This is debateable, but …

- Successful “entry-level” systems will require:
 - Imaginative business planning
 - Specialized, proven RAS technologies
 - Niche marketing strategies
 - Exceptional quality cultured products
 - Significant capital investment
DEFINING “COMMERCIAL-SCALE” RAS
(Minimal “Entry-Level” Requirements)

• A realistic and carefully articulated business plan describing …
 ✓ An owner-operated business - full-time commitment
 ✓ Threshold level profit potential - $30,000-$100,000 / year?
 ✓ Established markets for the anticipated product

• RAS with continuous year-round production
 ✓ Approaching weekly harvest capabilities (market-driven)
 ✓ Maintenance of multiple graded populations of fish
 ✓ Stable and dependable production
 ✓ Technically viable/proven aquaculture designs
 ✓ A threshold harvest capacity of fish/vegetables

COMMERCIAL-SCALE ADAPTATIONS

Besides defining a particular minimum “scale”, what technical modifications define a commercial RAS?

INCREASING INTENSIFICATION
Design Categories (Unit Processes)

• Tank number, size & design
• Biofiltration
• Clarification
• Dissolved Oxygen Control – Aeration/Oxygenation/Ozonation
• Carbon Dioxide Control
• pH Control
• Feeding strategies
• Proportional energy costs in all categories
Low-energy designs:

- Insulated/covers tanks.
- Off-peak electrical immersion heaters.
- Low-head biofilters, clarifiers, aeration.
Commercial-Scale Designs
LOW-HEAD SYSTEM

16 Tank RAS
Complete De-centralization

2.5 HP Air Blower Provides:
• rotational tank flow (peripheral airlift pumps)
• circulation of water between system components (airlift)
• aeration (diffused air)
• clarification (gravity separators)
• foam fractionation (diffused air)
• carbon dioxide sparging (diffused air)
• rotation of Rotating Biological Contactors (paddlewheel)

Determining Production Capacity

“Satellite Tank System Design”
16 Tanks - Totally Centralized

PRODUCTION CAPACITY
Staggered tank stocking with fingerlings
6 month growout cycle
2 harvests / tank / year
0.3 lbs/gallon density
600 lbs x 16 x 2 = 19,200 lbs
Determining Production Capacity

“Multiple-Tank / Density Manipulation Systems”

16 Tanks - Totally De-centralized

8 tanks x 8.7 harvests/year
600 lbs x 8 x 8.7
= 41,700 lbs

PRODUCTION CAPACITY
Patented density manipulation system design
Every 6 weeks ...
8 tanks are harvested
7 tanks are subdivided
1 tank is stocked with fingerlings

First Commercial-Scale Designs
LOW-HEAD SYSTEMS

PRODUCTION CAPACITY
Tank size – 10’ diameter (2000 gallons) (15 production tanks)
Feed capacity - 10 lbs/day/tank
Max. density - 0.3 lb/gallon
System capacity - 40,000 lbs/year (8 tanks harvested every 6 weeks)

System limitations (to allowing increased feed levels)
• Providing stable levels of dissolved oxygen
• Controlling levels of unionized ammonia
• Controlling settleable solids levels
• Limited emergency options
• Off-flavor and aesthetic concerns

TOTAL ENERGY REQUIREMENT
2.5 HP - 0.4 kwh’s/lb of production
COMMERCIAL-SCALE ADAPTATIONS

INCREASING INTENSIFICATION

❖ Any RAS design is only as good as its least effective unit process (measured by feed level)!

❖ All water treatment unit processes must be designed for the anticipated maximum daily feed input, not the average.

❖ All integrated RAS unit processes should be co-engineered.

COMMERCIAL-SCALE ADAPTATIONS

Tank Design - Materials

❖ The materials used for tank construction must be durable, smooth, inert, and non-toxic.

❖ If the material can be penetrated, at some point it will be, and the culturist should consider the consequences in terms of lost stocks and profits.

Tank Construction Options
• Fiberglass
• Concrete (treated)
• Plywood/liner
• Steel with epoxy paint
• Corrugated steel/liner
COMMERCIAL-SCALE ADAPTATIONS
Tank Design - Configuration

- The tank hydraulics must be completely self-cleaning
- The tank is the 1st element of the clarification system
- All waste solids must exit the tank → clarifier within minutes
- Co-engineered for a hydraulic retention time < 1 hour

Rectangular tank
Round tank
Cross-flow tank

COMMERCIAL-SCALE ADAPTATIONS
Tank Design – Number and Size

The tank number and size will be determined by the fish management strategy.

- This strategy must consider the requirement for semi-continuous stocking and harvesting capabilities.
- Requires designs for both nursery and grow-out systems (and in some cases larval and fry culture systems).
- The tank size and number, coupled with the anticipated density at harvest, will dictate the production capacity of the facility.
- The fish species sometimes prefers a particular tank design.
COMMERCIAL-SCALE ADAPTATIONS
Tank Options - Centralization

The number of tanks maintained by each Water Treatment System determines the level of “CENTRALIZATION”.

This is THE MOST important factor influencing both the “bio-security” of the system, and it's cost!

COMMERCIAL-SCALE ADAPTATIONS
Tank Design - Centralization

Management Strategies and Options

Fewer / Larger Water Treatment Systems > Reduced costs > Multiple satellite tanks sharing water > Efficient management of multiple cohorts > More potential for catastrophic loses, least cost

More / Smaller Independent Water Treatment Systems > Increased costs > Greater biosecurity > Reduced potential for catastrophic loses, greater cost

Density Manipulation > Independent RAS modules > increased production, bio-security
Maintenance of adequate levels of dissolved oxygen is the first “limiting factor” to commercial production.

Low-Head Methods for Replenishing Dissolved Oxygen Levels:

- Diffused air
- Surface aerator
- Surface agitator

COMMERCIAL-SCALE ADAPTATIONS

Aeration System Design

Aeration → Oxygenation

Most significant impediment – Energy / Technology

Requires “Pure Oxygen Technologies”
Access to LOX or Oxygen Generation capabilities
COMMERCIAL-SCALE ADAPTATIONS

Oxygenation System Design

- **Low-Head Oxygenator (LHO) for Replenishing Dissolved Oxygen Levels:**

 Provides supersaturated levels of dissolved oxygen at low head, but at reduced efficiencies (70-75%).

COMMERCIAL-SCALE ADAPTATIONS

Aeration System Design

- **Moderate-Head Methods for Replenishing Dissolved Oxygen Levels:**

 Requires a pump to supply the correct flow rate at 12 psi of pressure, dissolving the oxygen at 100% efficiency.

Pure oxygen / oxygen saturator
Commercial-Scale Designs

MODERATE-HEAD SYSTEMS

USE OF PURE OXYGEN

Options

1. **Diffusers**
 - Too inefficient except for emergency use
2. **Low-Head Oxygenator**
 - Low-energy but still somewhat inefficient
3. **Oxygen Saturators**
 - Very efficient but at some energy cost

Ozone option available with oxygen saturator technologies ...
- improved water quality
- eliminates off-flavors
- sterilization options
- simplified tank and plumbing maintenance

USE OF PURE OXYGEN

w/ Oxygen Saturators

Positives

1. Additional production capacity / fish density
2. Additional emergency options – RAPID RESPONSE
3. Simplified stock management/harvests
4. Ozone option

Negatives

1. Requires pumps @ moderate pressure (12 psi)
2. Requires additional CO₂ sparging technologies
3. More sophisticated controls
4. Requires rapid emergency response (incr. densities)
First Commercial-Scale Designs
LOW-HEAD SYSTEMS – WITH OXYGEN SATURATORS

Addition of 1/3 HP Pump (sidestream) w/ Oxygen Saturator
40,000 > 55,000 lbs/year RAS

0.3 HP x 0.75 = 0.225 kw x 24 hrs = 5.4 kwh/day
At $0.08/kwh = $0.43/tank/day
to culture an additional 2.7 lbs of fish/day ($0.16/lb)

FCS COMMERCIAL-SCALE FACILITIES
1984-1988
First Commercial-Scale Designs
LOW-HEAD SYSTEMS (with Oxygen)

PRODUCTION CAPACITY
- Tank size: 10’ diameter (1800 gallons)
- Feed capacity: 12 lbs/day/tank
- Max. density: 0.5 lb/gallon
- System capacity: 55,000 lbs/year (using density manipulation technology)

System limitations (to adding additional feed)
- Controlling settleable solids levels
- Controlling levels of unionized ammonia
- Controlling levels of carbon dioxide

TOTAL ENERGY REQUIREMENT
- 7 HP (0.8 kwh’s / lb production)

SPRAY-TOWER/PACKED COLUMN... CONTROLS CARBON DIOXIDE LEVELS

With the use of pure oxygen, it is essential to include designs for the sparging of carbon dioxide from the water.
COMMERCIAL-SCALE ADAPTATIONS
Clarifier Design

Design Requisite: The clarifier must remove suspended and settleable solids of the finest particle size possible.

Particle Size Removal Capacity

- **Settling tanks** (determined by “residence time” but > 100 µ)
 - ✓ Gravity settler
 - ✓ Centrifugal separator
 - ✓ Radial flow settler
- **Protein skimmer (foam fractionator)** (1-30 µ)
- **Microscreen drum filter** (determined by screen sieve)
- **Bead filter** (20-30 µ)

SOLIDS CONTROL – CLARIFIER DESIGN

Gravity separators provided limited but effective solids control to 120 µ.

Combined with foam fractionation for removal of fine particulates.

Bead clarifiers effectively remove fine particulates to < 30 µ. However, they cannot sustain high flow rate/low head design requirements.

Are excellent for larval and fry culture systems.
SOLIDS CONTROL – CLARIFIER DESIGN

Improved efficiency from 120 µ > 30 µ removal capability
Most significant impediment - $$$$$$$

Biofiltration in Recirculating Aquaculture Systems (RAS)

Bacterial Nitrification of Ammonia

BIOFILTER

Ammonia (NH₃) → Nitrosomonas → Nitrite → Nitrobacter → Nitrate (NO₃⁻)

Nitrifying bacteria, concentrated on the biofilter media surfaces, convert ammonia to nitrite and then to relatively harmless nitrate, proportionally to feed input levels.
Moving Bed BioReactors (MBBR’s)

- **Effective but high-energy biofiltration systems.**
- **Center for Marine Biotechnology**
- **AES Low-Space Bioreactor**
- **Open-containment Bioreactors**

Commercial Aquaculture Systems using Rotating Biological Contactors

- From 1985-1995, several aquaculture facilities were designed and operated using dozens of small (0.6 m diameter) floating/air-driven RBC’s, for the commercial production of finfish in closed systems.
Larger biofilters (1.22 m diameter) were designed and built to accommodate larger-scale fish production facilities.

- Constructed with neutral buoyancy, allowing frictionless rotation of the non-weight bearing central shaft within the guiding channels of the fiberglass staging unit.

 Rotation is affected by the injection of air below, and/or water onto a centrally placed paddlewheel.

- Using spokes and rigorous attachment methods, the media is secured to the rotating shaft, and since no gear motor is required, is rotated at full 50% submergence.

Several 10,000 ft² (930 m²) RBC's are rotated during acclimation procedures using only a small linear air compressor.
For over 15 years, the larger RBC’s have been incorporated in closed recirculating production facilities for the commercial production of striped bass, hybrid striped bass, yellow perch, steelhead trout, coho salmon and tilapia.

Commercial Aquaculture Systems using Rotating Biological Contactors

- Increased “Centralization” (4 tank systems)
- Microscreen Drum Clarifiers (servicing 4 tanks)
- Expanded biofiltration designs - 4’ diameter RBC
- Central pump for all component requirements
 - Combined recycle / circular flow in tanks
 - Oxygenation (at 12 psi)
 - Rotation of RBC’s
 - Flow to CO₂ spargers
Commercial-Scale Designs
MODERATE - HEAD SYSTEMS

4-tank “quads”

SPECIFICATIONS FOR INCREASING PRODUCTION LEVELS
(Increased “Centralization”)

PRODUCTION CAPACITY

Requires increased biofiltration

- Tank size: 10’ diameter (2000 gallons)
- Feed capacity: 15 lbs/day/tank
- Max. density: 0.5 lb/gallon
- System capacity: 65,000 lbs/year

(using density manipulation strategy)
SPECIFICATIONS FOR INCREASING PRODUCTION LEVELS
(Increased Tank Size)

PRODUCTION CAPACITY
Requires increased biofiltration and pumping capacity

- **Tank size**: 12’ diameter (3000 gallons)
- **Feed capacity**: 15 lbs/day/tank
- **Max. density**: 0.5 lb/gallon
- **System capacity**: 80,000 lbs/year

(Using density manipulation strategy)

EVOLUTION – Most Significant Limiting Parameter
SCALE
INDUSTRIAL-SCALE RAS DESIGNS
INDUSTRIAL-SCALE RAS DESIGNS

4-tank nursery systems

2-tank grow-out systems (20 – 25 diameter)

Commercial-Scale Designs
MODERATE - HEAD SYSTEMS

SPECIFICATIONS FOR INCREASING PRODUCTION LEVELS
(Increased Tank Size)

PRODUCTION CAPACITY
Requires increased biofiltration and pumping capacity

- Tank size: 20’ diameter (10,000 gallons)
- Feed capacity: 65 lbs/day/tank
- Max. density: 0.5 lb/gallon
- System capacity: 330,000 lbs/year

(using density manipulation strategy)
SPECIFICATIONS FOR INCREASING PRODUCTION LEVELS
(Increased Tank Size)

PRODUCTION CAPACITY
Requires increased biofiltration and pumping capacity

- Tank size: 25’ diameter (15,000 gallons)
- Feed capacity: 100 lbs/day/tank
- Max. density: 0.5 lb/gallon
- System capacity: 500,000 lbs/year

(using density manipulation strategy)

Fresh-Culture Recirculating Aquaculture System
250 ton target capacity
Additional Design Considerations

Water Temperature Control Options

- Room temperature control
- Electrical immersion heaters
- Counter flow immersion coils
Computer Monitoring and Control Options

Feed Management Options

- Manual feeding
- Demand feeding
- Automatic feeding
 with or w/o central distribution systems
- Timed / computer controlled
 ✓ Vibratory
 ✓ Auger
 ✓ Belt
Fish Species Options

- Striped bass
- Hybrid striped bass
- Yellow perch
- Red drum
- Barramundi
- Cobia
- Sea bass
- Sea bream
- Rainbow trout
- Coho salmon
- Yellow perch
- Coho salmon
- Cobia
- Sea bass

Aesthetic Considerations

Practical and Public Relations Influences

- Tank Design
- Building architecture
- Product packaging
- Ozone
 - Improves aesthetics
 - Aids biofiltration
 - Improved fish health & management
 - Eliminates off-flavors
Stocking and Stock Manipulation

- Delivery of fingerlings
 - on-site hatchery?
- Maintaining multiple cohorts
- Grading of fish populations
- “Warehousing” of fingerlings
- Density manipulations

Vertical Integration – Hatchery Systems

Increased scale allows for the consideration of a variety of options not possible at “entry-level”, or on a severely limited budget.

- Live-food systems for larval culture
- Larval and fry culture systems
Harvesting Options

- Manual harvesting techniques, using crowders, seines, nets, scales, totes, ice, CO₂, etc.
- Automated fish pumps, counters, graders

Processing and Marketing Considerations

- Processing equipment options
- Live sales to Asian market
- Whole on-ice
- Processed and packaged
Waste Treatment Considerations
Reed Beds / Greenhouse Aquaponics

Integration of RAS waste treatment facility with hydroponic greenhouse facility

Components:
- Microscreens
- Dewater
- Aerobic stabilization
- Reed beds
- Filters
- UV
- Mixing Reservoir
- Hydroponic beds
Phased “Entry” Options

Entry-level growout ➔ Nursery

Larger-scale growout systems

330,000 lb/yr production

1 million lb/yr production

CONSIDERATIONS FOR RAS DESIGN EVOLUTION

1) Higher density levels
2) Higher overall production levels
3) High-valued species options
4) Expanded processing and marketing options
5) Emergency response options (oxygen)
6) Elimination of off-flavors (ozone)
7) Computer and telemetry control options
8) Higher % recirculation – water conservation
9) Waste treatment options – reed beds/aquaponics
10) Vertical integration potential
11) Proportional cost of increased energy use??
RAS System Design and Development

PROJECT REALIZATION

FUNDING

DESPERATION

UNFULFILLED DREAM

FANTASY

FAIRY TALE

VISION

PLAN

BUSINESS PLAN
FINANCIAL FEASIBILITY STUDY

DREAM

DAY 1

YEAR 1

OPEN-ENDED

QUESTIONS?