Aquaponics: Food Safety & Human Health

D. Allen Pattillo
Aquaculture Extension Specialist
Iowa State University
Introduction

• Food safety is a concern
 – little is known about foodborne diseases in aquaponics systems

• Foodborne diseases
 – Annually responsible for 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths
 – Result in $10 - $83 billion in pain and suffering, reduced productivity, and medical costs annually

• Specific concern with aquaponics
 – Proximity of fish culture water to edible plant culture
Introduction

• Fish generally not regarded as a food safety threat in aquaponics
 – Temperatures of culture water are low
 – Thought that establishment of pathogens is not promoted
 • (e.g. *Escherichia coli* or *Salmonella* spp.)
• Potential for survival and growth is really unknown
• Evaluation of this assumption is needed
Who is Responsible for Safe Food?

- Producers
- Handlers
- Processors
- Food Suppliers
- Consumers

www.fightbac.org
Aquaponic Food Safety
Microbial Threats (Greatest to Least)

1) Listeria monocytogenes
2) Salmonella spp.
3) Shiga-toxin E. coli
4) Vibrio spp.
5) Aeromonas spp.
6) Shigella spp.
7) Campylobacter spp.
8) Pleisomonal shigelloides
9) Edwardsiella tarda
10) Crypyosporidoum
11) Leptospira spp.
Food Safety Threats (Greatest to Least)

(A) Leafy vegetables
Food Safety Threats (Greatest to Least)

(B) Dairy

(C) Poultry

Painter et al. 2013
Why is produce risky?

1. Raw
2. Wrinkly
 – High Surface Area
3. Sticky
 – Covered in Biofilm
Biofilms and Pathogens

• Plant matter is coated in a living substance called biofilm that contains beneficial and harmful microbes.

• Biofilms are sticky and may harbor pathogens like:
 – *Listeria*
 – *Salmonella*
 – *Aeromonas*
Listeria monocytogenes

• Survives with or without oxygen
• Grows well in refrigerator temperatures
• Very highly pathogenic
Salmonella spp.

- Very common in wild birds and rodents
- Can persist in water or wet, cool environments for months
- Can contaminate feed
Aeromonas hydrophilia

• Associated with fish and water
• Probably high infectious dose
• Immunocompromised people are at risk
Vibrio spp.

- 3 main species including Cholera
- Aquatic bacteria
- Often associated with shellfish
Escherichia coli (O157H7)

• Not carried by fish
 – Cold-blooded
• Contamination likely because of poor employee hygiene
Non-Bacteria

- *Cryptosporidium*
 - Calves (or people)
- *Cyclospora*
 - Mexican raspberries
- *Giardia*
 - Person – water – person

- Protozoans are Resistant to chlorine!!
How are pathogens introduced to produce?

- Hands
- Aerosols
- Direct water contact
- Internalization?
 - New study shows *E.coli* actually inside of lettuce plants
Reducing Food Safety Risks

• **Good Agricultural Practices (GAPs)**
• Use of water and food sterilization methods
 – Ultraviolet Irradiation
 – Ozone
 – Hydrogen peroxide
 – Others
Good Agricultural Practices

GAPs help reduce contamination risks for:

• Soil
• Water
• Hands
• Surfaces

GAPs include:

• Food Safety Plan

PM 1974A – On-farm Food Safety: Guide to Good Agricultural Practices (GAPs)
http://store.extension.iastate.edu/Product/On-farm-Food-Safety-Guide-to-Good-Agricultural-Practices-GAPs
Good Agricultural Practices

GAPs help reduce contamination risks for:

- Soil
- Water
- Hands
- Surfaces

GAPs include:

- Food Safety Plan

PM 1974A – On-farm Food Safety: Guide to Good Agricultural Practices (GAPs)

http://store.extension.iastate.edu/Product/On-farm-Food-Safety-Guide-to-Good-Agricultural-Practices-GAPs
Food Handling Tips-
Health, Hygiene & Hand-washing

• Sick workers should not handle food

• Proper hand-washing techniques to prevent cross-contamination

Sample Handwashing Procedure
1. Rub hands together with soap under running water for 15 seconds (sing ‘Happy Birthday’ twice).
2. Before turning off water, dry hands with disposable towel.
3. Use towel to turn off faucet.
4. Discard towel.
 If the towel dispenser has a handle, ask staff to wash hands, turn towel crank, wash hands again, use the towel to dry hands, and then use towel to turn off faucets.

PM 1974B – On-farm Food Safety: Food Handling Guide
http://store.extension.iastate.edu/Product/On-farm-Food-Safety-Food-Handling-Guide
Food Handling Tips – Clothing & Footware

• Reducing cross-contamination

Possible Policies to Reduce Contamination and Cross-Contamination

• Individuals will wash hands when reporting for work and after eating, drinking, smoking, and using the toilet.

• Individuals who are composting or applying manure, weeding, or planting will wash hands and change gloves prior to harvesting ripe product. Because many pathogens live in the soil, failure to wash hands between tasks can cross-contaminate the product. If cloth gloves are worn, separate pairs should be dedicated for each specific use or site. Disposable gloves will be changed between tasks.

• Individuals who harvest, wash, and/or pack product will wash hands and put on a clean apron and gloves after harvesting and before washing or packing.

• Hair restraints must be worn during the washing and packing process. Hats, scarves, hair nets, or other covering that restrains hair can reduce the chance of loose hairs falling on product.

• No jewelry will be worn during washing or packing. Rings with settings, long necklaces, and earrings can pose safety and contamination risks. One exception might be the wearing of a plain wedding band.
Food Handling Tips - Training & Documentation

• Training new workers on GAPs
• Keeping Records

New Staff Orientation Checklist
✓ Tour of operation
✓ Meet other workers
✓ Handwashing
 (when, where, how, and why)
✓ Health and illness
 (what and why)
✓ Eating and drinking
 (when, where, and why)
✓ Clothing and footwear
 (what, when, and why)
✓ Hair restraints
 (what, when, and why)
✓ Jewelry (what, when, and why)
Food Safety Plan

Why have a food safety plan?

• Planning
• Training
• Liability
• Quality Control
• Crisis Management

Benefits of a Food Safety Plan

• Provides operational roadmap for food safety risk reduction
• Offers mechanism for monitoring effectiveness of changes to improve product safety and quality
• Provides structure through which assessment of an operation can occur
• Creates a documentation process to verify production and processing changes
• Serves as a reference for all employees during training and throughout the season

PM 1974A – On-farm Food Safety: Guide to Good Agricultural Practices (GAPs)
http://store.extension.iastate.edu/Product/On-farm-Food-Safety-Guide-to-Good-Agricultural-Practices-GAPs
Food Safety Plan

What goes in a food safety plan?

1. Production steps
2. Hazard analysis
3. Control points
4. Monitoring strategies
5. Adjustment protocols
6. Documentation

Sample Food Safety Plan

Steps 1-2. While assessing your storage facility, you identify the cold storage temperature as a potential risk of promoting bacterial growth.

Step 3. Measuring and recording the temperature routinely is a way of monitoring this risk.

Steps 4-5. Start monitoring and recording temperatures. This is a modification that easily can be implemented with minimal expense and time commitment.
<table>
<thead>
<tr>
<th>Category</th>
<th>Concentration</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Bleach</td>
<td>Produce:
• 100-200 ppm
• 200 ppm = 2 table-spoons of 6% hypo chlorite (household bleach) per gallon in warm water (75-120°F)
Surface:
• Typically 50-100 ppm</td>
<td>• Unscented regular strength bleach (6%)
• Sanova™ (acidified sodium chlorine)</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>• Less than 3 ppm in liquid form</td>
<td>• Zep Dominion™</td>
</tr>
<tr>
<td>Organic Acids</td>
<td>• Acetic Acid
• Citric Acid
• Lactic Acid
• Vinegars contain less than 8% acetic acid
• 8% vinegar with a ratio of 1 part vinegar to 3 parts water
• Follow manufacturers’ recommendations</td>
<td>• Vinegar at less than 8% acetic acid from an organic source
• Veggixide® (citric/lactic acid)
• PRO-SAN© LC
• FIT (citric acid, grapefruit seed, ethanol)</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>• Food grade hydrogen peroxide 1-5%; 3% most common
• Follow manufacturers’ recommendations</td>
<td>Food grade hydrogen peroxide</td>
</tr>
<tr>
<td>Peroxyacetic Acid /Peracetic Acid</td>
<td>• Follow manufacturers’ recommendations</td>
<td>• Tsunami 100™ (hydrogen peroxide/peroxyacetic acid)
• StorOx 2.0 (hydrogen peroxide/peroxyacetic acid)
• SaniDate 12.0 (peroxyacetic acid)
• StorOx (hydrogen peroxide/peracetic acid)</td>
</tr>
</tbody>
</table>
Aquaponic Food Safety Research at ISU
EFFICACY OF UV-STERILIZATION IN REDUCING FOOD-BORNE PATHOGENS IN AN AQUAPONICS SYSTEM

D. Allen Pattillo*, Angela M. Shaw, Christopher J. Currey, Kun Xie, and Kurt A. Rosentrater

Iowa State University
Introduction

Use of ultraviolet (UV) radiation for sterilization in recirculating aquaculture

• proven to reduce pathogen loads in water
• No chemical additions needed
 – increasing fish health
 – decreasing need for water exchange

Effective use of a UV sterilizer should reduce abundance of many bacterial and viral pathogens

• reduce probability of cross-contamination between water and plant tissues
Study Objectives

1) Identify the presence and abundance of pathogens in an aquaponics system

2) Evaluate the efficacy of UV sterilization in suppressing pathogens
The Systems

- 27 in (69 cm) Dia.
- 35 Gal. 133 L
- ~200 Gal. ~760 L
- 8 ft (2.43 m) Deep
- 1 ft (30 cm) Deep
- 4 ft (1.22 m)
Barramundi
\((Lates \text{calcarifer}) \)

Italian Largeleaf Basil

Buttercrunch Bibb Lettuce
Study Design

• Study Period
 – November 11, 2014 – Present
• Plants germinated 4 weeks prior to stocking
• All-male barramundi stocked at 236 ± 63g
• Fish Fed twice daily
• Water quality recorded every morning
• Water chemistry analyzed twice weekly
• CaCO₃, NaHCO₃, and Fe supplemented as needed
Study Design

Pathogens Evaluated

• What?
 – E. coli/Coliform
 – E. coli O157
 – Salmonella spp.
 – Aeromonas spp.

• HOW?
 • AEROBIC PLATE COUNTS
 • COLIFORM COUNTS

• Where?
 – Water
 – Plant
Study Results

1) Identify the presence and abundance of pathogens in an aquaponics system

2) Evaluate the efficacy of UV sterilization in suppressing pathogens
Microbial Counts in Lettuce

Aerobic Plate Counts in Lettuce within Aquaponics

Microbial Load (CFU/g)

Food (<7 CFU/g)

Day of Sampling

IOWA STATE UNIVERSITY
Extension and Outreach
Microbial Counts in Lettuce

Coliform Counts in Lettuce within Aquaponics

Microbial Load (CFU/g)

Day of Sampling
Microbial Counts in Basil

Aerobic Plate Counts in Basil within Aquaponics

Day of Sampling

Microbial Load (cfu/g)

Food (<7 CFU/g)
Microbial Counts in Basil

Coliform Counts in Basil within Aquaponics

Food (<2 CFU/g)

Days of Sampling

Microbial Load (cfu/g)
Microbial Counts in Water

Aerobic Plate Counts in Water within Aquaponics

Microbial Load (cfu/mL) vs. Day of Sampling

Drinking Water (<2.5 CFU/mL)
Microbial Counts in Water

Coliform Counts in Water within Aquaponics

Microbial Load (CFU/mL)

Drinking Water (<1 CFU/mL)

Day of Sampling

Microbial Counts in Water

Aeromonas Counts in Water within Aquaponics

Microbial Load (cfu/mL)

Day of Sampling

Drinking Water (<10 CFU/mL)
Discussion

1) Identify the **presence** and abundance of pathogens in an aquaponics system

Did we find potential pathogens?

– Water - Yes
– Plants - Yes
Discussion

1) identify the presence and **abundance** of pathogens in an aquaponics system

How many Pathogens did we find?

<table>
<thead>
<tr>
<th>Test</th>
<th>Aerobic Plate Counts</th>
<th>Coliform Counts</th>
<th>Aeromonas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basil (CFU/g)</td>
<td>2.70 - 6.54</td>
<td>0.00 - 2.47</td>
<td>--</td>
</tr>
<tr>
<td>Lettuce (CFU/g)</td>
<td>2.29 - 6.97</td>
<td>0.00 - 2.25</td>
<td>--</td>
</tr>
<tr>
<td>Water (CFU/mL)</td>
<td>0.00 - 6.55</td>
<td>0.00 - 2.47</td>
<td>2.23 - 4.44</td>
</tr>
</tbody>
</table>
Discussion

2) Evaluate the efficacy of UV sterilization in suppressing pathogens

Did UV reduce water Pathogen loads?

• Aerobic Plate Counts – Yes, briefly
• Coliform Counts – variable results
• Aeromonas – Somewhat
 – maintained <10 CFU/mL
Discussion

2) Evaluate the **efficacy of UV sterilization** in suppressing pathogens

Did UV reduce lettuce Pathogen loads?

- Aerobic Plate Counts – Yes, briefly
- Coliform Counts – variable results
Discussion

2) Evaluate the **efficacy of UV sterilization** in suppressing pathogens

Did UV reduce **basil** Pathogen loads?

- **Aerobic Plate Counts** – Yes, briefly
- **Coliform Counts** - no
Conclusions

- Aquaponic produce did contain foodborne pathogens – at times levels were above the safe threshold
- UV sterilization alone is not enough to eliminate food safety concerns for aquaponics
Conclusions

• Alternative methods must be explored to improve food safety in aquaponics to move the industry forward

• Potential methods
 – Water exchange
 – Improved filtration
 – O-zone
Food Safety Resources

• The Ohio State University
 – http://foodsafty.osu.edu/

• Iowa State University
 – http://www.extension.iastate.edu/foodsafty/

• University of Minnesota
 – www.Extension.umn.edu/foodsafty

• Penn State
 – http://extension.psu.edu/food/safety
References

Questions?

D. Allen Pattillo
Fisheries and Aquaculture Extension
Iowa State University

• Pattillo@iastate.edu
• 515-294-8616