Commercial Aquaculture Feed Production (Floating Feeds)

Kurt A. Rosentrater, Ph.D.

Department of Agricultural and Biosystems Engineering

Iowa State University

Presentation Outline

- Goals of extrusion processing
- Basic principles
- Types of extruders
- Common extrusion conditions
- Key variables
- Basic theory
- Competing effects during extrusion
- Extrusion challenges

Goals of Extrusion Processing

- Cooking
 - Starch gelatinization
 - Deactivate anti-nutritional factors
- Sterilization
 - Pathogens
- Expansion
 - Floating aquafeeds
- Texturization
 - Porous structure
- Product shaping
 - Pellets

Wenger

InstaPro

InstaPro

Temperature distributions

Pressure distributions

Die exit

$$V_1 = mRT_1/P_1$$
 $P_1V_1 = P_2V_2$
 $V_2 = mRT_2/P_2$ $V_2 = P_1V_1/P_2$

Die exit

Die – for shaping

Single screw

Twin screw

Laboratory-scale

Pilot scale

Commercial scale

Continuous, single element screws

Multiple element screws

Common Extrusion Conditions

- Autogenous
 - No external heat provided; "cold" extrusion
 - All heat is generated by friction
- Isothermal
 - Barrel maintained at constant temperature
 - External jackets around barrel
- Polytropic
 - Most systems
 - External heat + frictional heat + external cooling

Common Extrusion Conditions

Moisture of dough

■ Low: < 20%

■ Medium: 20 – 30%

■ High: > 30%

Shear / screw speed

■ Low: < 20 1/s (< 191 rpm)

■ Medium: 20 – 100 1/s (191 – 955 rpm)

■ High: > 100 1/s (> 955 rpm)

Producing Quality Aquafeeds

- Several key variables
 - Raw ingredients
 - Processing conditions
 - Final products

+

Theoretical considerations

Key Variables

- Raw Ingredient Properties
 - Composition
 - Protein, lipid, fiber, starch, ash, AA profile, FA profile, etc.
 - Particle size distribution
 - Moisture content
 - Water activity
 - Color (Hunter *L-a-b*)

Key Variables

- Extrusion Processing Conditions
 - Geometry, size, shape
 - Temperature distribution
 - Die pressure
 - Dough density in the die
 - Specific mechanical energy (SME)
 - Feed input rate
 - Water input rate (conditioner + extruder)
 - Steam input rate (conditioner + extruder)
 - Extrudate discharge rate (throughput)

Key Variables

- Extruded Product Properties
 - Composition changes
 - Protein, lipid, fiber, starch, ash, AA profile, FA profile
 - Digestibility changes
 - Moisture content
 - Water activity
 - Color (Hunter *L-a-b*) changes
 - Product diameter
 - Product expansion (CSEI, LEI, VEI)
 - Unit density / porosity
 - Bulk density
 - Pellet durability
 - Water absorption
 - Water solubility
 - Water stability
 - Floatability / sinking velocity

Raw feed ingredients Compression Zone Feed Zone Metering Zone Shearing due to friction Extruded products

- Melting starch gelatinization
 - Break down intermolecular bonds of starch molecules in the presence of water and heat
 - Allows hydrogen bonding sites (the hydroxyl hydrogen and oxygen) to engage more water
 - Crystalline chains begin to separate into an amorphous form
 - Granules swell and then burst
 - Gelatinization temperature of starch
 - Depends on type, amount of water, pH, concentration of salt, sugar, fat and protein
 - Generally > 90 °C

Starch gelatinization

■ Flow – viscosity

Flow – viscosity

$$\tau = (\eta) \left(-\frac{1}{\gamma}\right)$$

Flow – viscosity

Flow rate (material throughput)

$$Q = \overset{\text{drag}}{Q}_d + \overset{\text{pressure}}{Q}_p$$

$$Q = \frac{m}{\rho}$$

Energy consumption

Energy consumption

$$E_{mech} = p \left(\frac{(hVD)^2 L}{\sin \theta} \right) \left(\left(\frac{uW}{H} \right) (\cos^2 \theta + 4\sin^2 \theta) + \mu_\delta \frac{e}{\delta} \right) + p \left(\frac{\pi NDWH}{2} \right) (\Delta P \cos \theta)$$

$$E_{mech} = \frac{\mu(\pi ND)^2 WL (\cos^2 \theta + 4\sin^2 \theta + 3a\cos^2 \theta)}{H \sin \theta}$$

$$SME = rac{E_{mech}}{m}$$

Typical extruder power consumption curve. Mean power consumption was determined by averaging the net consumption (i.e., excluding that due to friction) from the beginning to the end of the trial.

- As screw speed
 - Viscosity
 - Shear thinning (pseudoplastic)
 - SME at same T
 - Energy to turn screw greater than decrease in torque
 - Expansion
 - T increases due to increased friction
 - Mass flow rate

- As temperature 1
 - Viscosity
 - Temperature effects
 - SME at same screw speed
 - Energy to turn screw decreases
 - Expansion
 - Greater water evaporation at die exit

Temperature is critical

- T too low:
 - No cooking; feed particles don't melt; no pellets form
- T midrange:
 - Good cooking; starch gelatinization; particles melt and flow; expansion at die; pellet cohesion
- T too high:
 - Protein denatures; burning; fouling; jamming

Amino acids, enzymes, antibiotics, pre/probiotics, vitamins

Degradation vs. Time

- As moisture content
 - Viscosity
 - Less resistance to flow
 - SME at same screw speed and temperature
 - Energy to turn screw decreases
 - Pressure drop
 - Expansion

- Moisture content is critical
 - MC too low:
 - Pellets won't bind together; no water stability
 - MC midrange:
 - Particles melt and flow well; proteins are plasticized; good binding; pellet cohesion; high water stability
 - MC too high:
 - Not enough cooking; pellets not cohesive; will plug extruder

- As die diameter
 - Pressure drop
 - Less resistance to flow
 - SME at same screw speed and temperature
 - Energy to turn screw decreases
 - Expansion
 - Less water evaporation at die exit

- Ingredient particle size is important
 - Best to mill all ingredients prior to extrusion
 - < 0.5 mm
 - Otherwise
 - Stress fractures in pellets
 - Poor pellet durability
 - May plug die
 - Especially fish bones (from fish meal)

Ingredients + processing conditions + product quality

Extrusion Challenges

- Fiber content
 - Nonreactive with starch or protein
 - Absorbs water from other ingredients
 - Solution: grind all ingredients well; change formulation
- Oil content
 - Oil is a lubricant at high levels
 - Screw can't push dough or build up pressure
 - Solution: coat oil after extrusion
- Protein content
 - High protein blends do not expand
 - Do not float well; are not water stable
 - Solution: increase moisture during extrusion; change starch source

Some examples of high quality pelleted feeds

Some examples of poor quality pelleted feeds

Floating feeds

Sinking feeds

Low water stability

Small-scale extruder

Small-scale extruder

Extruder input

Extruder power

50 – 250 kg/h/machine; > 1000 in Bangladesh

Farm-Scale Mills

Air-drying extruded pellets

Thank you

Any questions?

