Greetings from Gary

Welcome to the first issue of Ohio Fruit News for 2012. We are starting out the year with a new look, name and abnormally warmer weather conditions than we are accustomed to in Ohio. Be sure to note the freeze warning below. Precautions will be needed since our growing season is so far ahead of schedule.

Subfreezing temperatures expected for Ohio tonight and Tuesday Morning

Subfreezing temperatures are expected for Ohio tonight (March 26, 2012) and Tuesday. Here is the summary of Pike County’s forecast from the National Weather service: “Canadian high pressure will build south into the lower great lakes and Ohio valley tonight. Much colder air with this system will allow temperatures to drop below freezing for several hours late tonight into Tuesday morning for locations generally north of the Ohio River. For locations near and south of the river...temperatures will dip into the mid 30s. After an extended period of unseasonably warm weather the past two weeks...vegetation across the region has reached growing stages that are several weeks ahead of schedule. As

Inside this issue:

Greetings from Gary 1
Freeze warning 1-2
Strawberry disease control alert 3
Managing Apple Scab 4-8
OSU Contacts 9-10
Editorial Information 11
Freeze Warning

a result... sub freezing temperatures and frost may damage sensitive vegetation.”

For information on frost protection of fruit crops, follow these links:

Strawberries: http://www.fruit.cornell.edu/berry/production/pdfs/strfrostprotect.pdf

Grapes: http://viticulture.hort.iastate.edu/info/06iawgmetg/frostprotectionhandout.pdf

Frost Protection for Tree Fruits: http://resources.cas.psu.edu/TFPG/AGRS45part01-10.pdf

South Centers Prepares for Freeze

Blueray blueberry plants under row cover at OSU South Centers as part of their frost protection plan (March 26, 2012).
Strawberry disease control alert

by Mike Ellis

This could be a bad year for development of anthracnose fruit rot in perennial matted row plantings throughout the eastern U.S. in 1991. It “popped up” in plantings and on farms that had never seen the disease before.

Anthracnose is a constant threat in “annual” or “plastic culture” strawberry production, but is very sporadic in perennial matted row production. However, when it does develop in matted row production, it is generally devastating.

This abnormally warm spring could be favorable for anthracnose development if temperatures remain high, especially with abundant rainfall like we had last year. We had an epidemic of anthracnose fruit rot in perennial matted row plantings in the Eastern United States. Anthracnose fruit rot is a warm weather disease.

Anthracnose is a constant threat in “annual” or “plastic culture” strawberry production, but is very sporadic in perennial matted row production. However, when it does develop in matted row production, it is generally devastating.

It can move around undetected on nursery stock and never develop in “normal” years; however, when high temperatures combined with rainfall occur during bloom through harvest, it can explode on you. This could be one of those years.

Normally eastern growers make sprays through bloom for botrytis fruit rot control and may not make sprays during harvest. If anthracnose is a threat, fungicide sprays to control it are required throughout harvest.

Hopefully the weather will return to “normal,” but these high temperatures have me thinking about anthracnose and I wanted to share these thoughts with growers.

If it stays abnormally warm, some pre-bloom applications of Captan fungicide may be a good idea to keep the anthracnose fungus from building up populations on symptomless leaves then attacking the fruit as it develops.

Attached to this message is a handout on using fungicides to control strawberry fruit rots in Ohio and a fact sheet on anthracnose fruit rot.

Feel free to contact me with questions.

Subscribe to OGEN—Ohio Grape Electronic News—for the latest commercial grape growing and vineyard news by emailing:

Dave Scurlock
scurlock.2@osu.edu
http://www.oardc.ohio-state.edu/grapeweb/

Check out the Fancy Fruit Newsletter published by Purdue University:
http://www.hort.purdue.edu/fff/fff.shtml
In apple orchards where scab was poorly controlled last fall, growers will need to compensate this spring for what we might call the five curses of high-inoculum, as outlined below:

1. Expect more ascospores: Using data from a study by Gadoury and MacHardy (1986), New Hampshire orchards that had less than 1% leaf scab in autumn produced an estimated 888,000 ascospores/A as compared with 6.1 billion spores/A for an orchard with 20% leaf scab (Table 1). These data suggest that orchards with 20% leaf scab may produce nearly 7,000 times more ascospores than orchards that had less than 1% leaf scab. Thus, orchards with a lot of scabby leaves in fall are indeed "highinoculum" orchards.

2. Expect more ascospores at green-tip: This is a logical corollary to the previous item. However, it is noted separately because the spores that are discharged early in the season pose the greatest risk for generating economic losses in commercial orchards. If ascospores initiate infections at green tip, then the first generation of conidia will become available about the time that trees are in bloom, and that is a period when fruit and leaves are at maximum susceptibility. Also, fungicide protection sometimes lapses toward the end of bloom if a fungicide spray is delayed with the objective of combining the fungicide with petal fall insecticides. Thus, having more ascospores at green tip escalates the risk of getting green tip infections that will produce conidia before petal fall, which in turn ratchets up the risk of fruit scab.

3. Conidia may overwinter in buds: Work by Holb et al. (2005) in the Netherlands showed that when scab incidence in autumn exceeded 40% of terminal leaves, then small numbers of viable conidia would often survive through winter inside bud scales. Although the numbers of conidia surviving in buds under the worst-case scenarios reported by Holb are dwarfed by the numbers of ascospores that would be produced in those orchards, the conidia in buds are perfectly positioned to cause infections as buds begin to grow in spring. Thus, conidia in buds can be expected to have much greater infection efficiency than ascospores since the majority of ascospores released at green tip will never find tissue where they can cause infections. Incidentally, viable spores have been found inside buds on at least several occasions in New York, so it seems probable that the results reported by Holb from studies in the Netherlands are also applicable to high-inoculum orchards in northeastern United States.

4. Expect more infections from marginal infection...
Managing Apple Scab

5. Fungicides will seem less effective: If one assumes that 2% of the total season's ascospores could be released at green tip, that only 1% of those released will succeed in causing infections in unsprayed orchards, and that a green tip fungicide spray will be 99.9% effective (which may be optimistic), then one might expect only 0.18 scab infections/A for orchards that had less than 1% leaf scab last year, whereas orchards with 20% leaf scab last year might see 1,218 infections per acre (Table 1). The only options for changing the odds are to either improve fungicide efficacy via higher rates, shorter intervals, and better spray coverage, or to implement inoculum reduction practices in the high-inoculum orchards.

Considering all of the above, the three early season strategies outlined below are logical options for managing scab in high-inoculum orchards:

First, apply one or more inoculum-reduction strategies to reduce the potential ascospore load. Four proven options for reducing ascosporic inoculum include (A) treating orchards in either late fall or early spring by applying 40 lb/A of urea dissolved in water and sprayed over the orchard floor (Sutton et al., 2000); (B) flail chopping leaf litter to speed leaf degradation (Sutton et al., 2000); (C) applying dolomitic lime to the orchard floor at the rate of 2.25 tons/A (Spotts et al., 1997); or (D) raking or vacuuming the leaf litter and removing it from the orchard. More details on methods for urea treatment or flail mowing can be found in Saffolds article published in 2009 (Rosenberger, 2009).

The use of dolomitic lime has only been tested for lime applied in late fall or winter, so its effectiveness following springtime applications is uncertain. Removing leaf litter from the orchard is practical only for small homeowner orchards unless one invests in specialized raking/vacuuming equipment that can cover large acreages efficiently.

We have received several questions recently about the efficacy of lime-sulfur for suppressing ascospore production. Lime-sulfur sprays were evaluated early in the 20th century, and three applications in spring partially suppressed ascospore production. However, later researchers abandoned lime-sulfur in favor of urea, which
Managing Apple Scab

generally proved more effective.

Second, begin fungicide applications at silver tip or green tip. Having a fungicide in place before the first infection period after bud break is absolutely essential, especially in orchards where the DMI fungicides are no longer effective. As noted above, failure to control early infections vastly increases the risks of economic losses.

Third, use higher rates of fungicides or fungicide combinations: In low-inoculum orchards, the scab risk at green tip can be adequately addressed with a copper spray (as applied to suppress fire blight) or by using mancozeb at 3 lb/A. Either of these options will provide about seven days of protection against apple scab. Even in low inoculum orchards, however, we know that higher rates of fungicide are needed as we approach tight cluster because 3 lb/A of mancozeb used alone is not adequate to control scab during the period of peak ascospore discharge between tight cluster and petal fall. In high-inoculum orchards, high numbers of ascospores may be released at green tip. Therefore, we suggest that high-inoculum orchards should be treated with a combination of either mancozeb at 3 lb/A plus copper, or mancozeb at 3 lb/A plus Syllit at 1.5 pt/A. (Note that Syllit and copper are NOT compatible!) Syllit is the liquid formulation of dodine. The new label no longer contains the restriction against using apple pomace from Syllit-treated trees for cattle feed.

For many years, dodine provided excellent scab control when applied in early-season sprays because of its excellent retention and redistribution characteristics, and also because it provides 48 hr of post-infection activity. Thus, it is an ideal mixing partner for mancozeb in green tip and half-inch green sprays except where dodine-resistant populations of apple scab are known to predominate. Recent testing in the Cox lab at Geneva suggests that dodine-resistant scab is less prevalent in NY than was previously suspected, so Syllit may again prove useful for one or two early season sprays in many orchards. However, because no one can be absolutely certain that an orchard is entirely free of dodine-resistant scab, Syllit should never be used alone. By using it in combination with mancozeb, we anticipate better scab control than where mancozeb is used alone (again, with the exception of orchards with very high levels of dodine resistance). Where mancozeb-copper combinations are used in the first spray of the season, the mancozeb-Syllit combination could be used in the second spray to enhance early season disease control. Where dodine-resistance is known to be present,
mancozeb-captan mixtures should be used instead of mancozeb-Syllit mixtures.

Combinations of mancozeb plus Scala or mancozeb plus Vangard might also be considered at green tip and half-inch green. However, so far as we can tell, Scala and Vangard do not redistribute very well and we therefore believe that mancozeb-copper, mancozeb-Syllit, or mancozeb-captan combinations are preferable to combinations with Scala or Vangard. The exception would be dodine-resistant orchards where an infection period occurred before any fungicide was applied. In that scenario, combinations of mancozeb with either Scala or Vangard could provide 48–72 hr of post-infection activity (counting from the start of the wetting period), whereas mancozeb-copper and mancozeb-captan combinations will only reach back 12–18 hr from the start of a wetting period.

In summary, high-inoculum orchards pose special challenges and must be treated with extra caution from the very beginning of the growing season. This is especially true for orchards where the DMI fungicides are no longer effective. Until the emergence of full-blown DMI resistance, DMIs provided an effective backstop for scab control programs because, when applied at bloom or petal fall, the DMIs could arrest any scab that had escaped early season sprays. Where DMI fungicides are no longer effective, failure to control scab at green tip in high-inoculum orchards can potentially lead to significant economic losses and a summer full of headaches because once established in trees, scab will likely remain active throughout the entire growing season.

In a future article, we will discuss additional fungicides, including new products that are becoming available, that may help to control scab during the period from tight cluster to first cover.
Managing Apple Scab

continued from page 7

Literature cited:

Table 1: Effect of inoculum levels on ascospore production based on predicted ascospore doses calculated for New Hampshire orchards by Gadoury and MacHardy (1986).

<table>
<thead>
<tr>
<th>Scab incidence on leaves in autumn</th>
<th>0.03% to</th>
<th>1.1% to</th>
<th>4% to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of orchards used for the estimate</td>
<td>0.52%</td>
<td>3.5%</td>
<td>10%</td>
</tr>
<tr>
<td>Total ascospores produced/A (X 1000)</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Ascospores/A released at green tip (X 1000)</td>
<td>888</td>
<td>9,262</td>
<td>242,559</td>
</tr>
<tr>
<td>Potential scab lesions/A from a green-tip infection period</td>
<td>18</td>
<td>185</td>
<td>4,851</td>
</tr>
</tbody>
</table>

1 Assuming that 2% of ascospores are released at green tip.
2 Assuming 1% of released spores could cause infections but 99.9% of those would be prevented by fungicides applied before the infection period.
OSU Fruit Specialists

<table>
<thead>
<tr>
<th>Name and Title</th>
<th>Contact Information</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brad Bergefurd Horticulturist OSU South Centers 1864 Shyville Rd. Piketon, OH 45661</td>
<td>Phone: 740-289-2071, ext. 136 Email: bergefurd.1@osu.edu Website: http://southcenters.osu.edu/hort</td>
<td>Small fruit crops and wholesale produce auction development and operations.</td>
</tr>
<tr>
<td>Dr. Imed Dami, Associate Professor & Viticulture State Specialist Dept. Hort. & Crop Science 216 Gourley Hall—OARDC 1680 Madison Avenue Wooster, OH 44691</td>
<td>Phone: 330-263-3881 Email: dami.1@osu.edu Website: oardc.osu.edu/grapeweb/</td>
<td>Viticulture research and statewide extension & outreach programs. Recommendation on variety selection. Imed is the primary research contact of the viticulture program.</td>
</tr>
<tr>
<td>Dr. Doug Doohan, Associate Professor Dept. Hort. & Crop Science 205 Gourley Hall – OARDC 1680 Madison Avenue Wooster, OH 44691</td>
<td>Phone: 330-202-3593 Email: doohan.1@osu.edu Website: http://www.oardc.ohio-state.edu/weedworkshop/</td>
<td>Weed control in fruit crops.</td>
</tr>
<tr>
<td>Dr. Mike Ellis, Professor Dept. Plant Pathology 224 Selby Hall—OARDC 1680 Madison Avenue Wooster, OH 44691</td>
<td>Phone: 330-263-3849 Email: ellis.7@osu.edu Website: http://plantpath.osu.edu/</td>
<td>Tree fruit and small fruit disease control.</td>
</tr>
<tr>
<td>Dr. Gary Gao, Small Fruit Specialist & Associate Professor OSU South Centers 1864 Shyville Rd. Piketon, OH 45661</td>
<td>Phone: 740-289-2071. ext. 123 Email: gao.2@osu.edu Website: http://southcenters.osu.edu/hort</td>
<td>Management of blackberries and raspberries, blueberries, currants and gooseberries, grapes, and strawberries.</td>
</tr>
<tr>
<td>David Marrison, County Director, Assistant Professor & Extension Educator for Agriculture & Natural Resources OSU Extension – Ashtabula County, 39 Wall Street, Jefferson, OH 44047</td>
<td>Phone: 440-576-9008 Email: marrison.2@osu.edu Website: http://ashtabula.osu.edu/</td>
<td>Grape production in northeast Ohio.</td>
</tr>
</tbody>
</table>
OSU Fruit Specialists

<table>
<thead>
<tr>
<th>Name and Title</th>
<th>Contact Information</th>
<th>Expertise</th>
</tr>
</thead>
</table>
| Dr. Diane Miller, Associate Professor, Tree Fruit Specialist | Phone: 330-263-3824
Email: miller.87@osu.edu | Tree fruit research and Extension |
| Dept. Hort. & Crop Science
203A Williams Hall
1680 Madison Ave.
Wooster, OH 44691 | | |
| Steve Prochaska, Extension Educator and Associate Professor, OSU Extension - Crawford County
112 E Mansfield St
Bucyrus, OH 44820 | Phone: 419-562-8731
Email: prochaska.1@osu.edu | Grape production in northeastern Ohio. |
| | | |
| Dr Jozsef Racsko, Tree Fruit Coordinator & Outreach Specialist
205A Williams Hall
OARDC-Wooster
Wooster, OH 44691 | Phone: 330-263-3883
Email: racsko.1@osu.edu | Tree fruit production. |
| | | |
| David Scurlock
Viticulture Outreach Specialist
118 Gourley Hall – OARDC
1680 Madison Avenue
Wooster, OH 44691 | Phone: 330-263-3825
Email: scurlock.2@osu.edu
Website: oardc.osu.edu/grapeweb/ | Evaluation of site suitability for vineyard establishment and all aspects of grape production practices in northern Ohio. David is the primary extension contact of the viticulture program. |
| | | |
| Dr. Celeste Welty, Associate Professor and Extension Entomologist
Extension Entomology
Rothenbuhler Labs
2501 Carmack Rd.
Columbus, Ohio 43210 | Phone: 614-292-2803
Email: welty.1@osu.edu
http://bugs.osu.edu/welty/index.html | Tree fruit insect and mite control. |
| | | |
| Dr. Roger Williams, Professor
Dept. Entomology
202 Thorne Hall II OARDC
1680 Madison Avenue
Wooster, OH 44691 | Phone: 330-263-3731
Email: williams.14@osu.edu
Website: http://entomology.osu.edu/ | Small Fruit insect and mite control. |
Ohio Fruit ICM News

If you have articles or events for possible inclusion in upcoming issues of this newsletter, submit them to:

Dr. Gary Gao
gao.2@osu.edu

NOTE: Disclaimer - This publication may contain pesticide recommendations that are subject to change at any time. These recommendations are provided only as a guide. It is always the pesticide applicator’s responsibility, by law, to read and follow all current label directions for the specific pesticide being used.

Due to constantly changing labels and product registrations, some of the recommendations given in this writing may no longer be legal by the time you read them. If any information in these recommendations disagrees with the label, the recommendation must be disregarded. No endorsement is intended for products mentioned, nor is criticism meant for products not mentioned. The author and Ohio State University Extension assume no liability resulting from the use of these recommendations.

Ohio State University Extension embraces human diversity and is committed to ensuring that all research and related educational programs are available to clientele on a nondiscriminatory basis without regard to race, color, religion, sex, age, national origin, sexual orientation, gender identity or expression, disability, or veteran status. This statement is in accordance with United States Civil Rights Laws and the USDA.

Keith L. Smith, Ph.D., Associate Vice President for Agricultural Administration and Director, Ohio State University Extension
TDD No. 800-589-8292 (Ohio only) or 614-292-1868

Central Ohio Poison Control Number
(800) 222-1222
TTY# 614-228-2272