Variation in Pawpaw (Asimina triloba L. Dunal) Cultivar Productivity and Quality Across a Biogeographic Gradient in Ohio

Sarah Francino
Contact: francino.1@osu.edu
G. Matt Davies
Joe Scheerens
Shoshanah Inwood
Brad Bergefurd

School of Environment & Natural Resources

Thank you!

Collaborating Farmers

- Ron Powell
- Gary Gottenbush
- Richard Glaser
- Russ Benz
- Marc Stadler
- Ted Beedy
- Lance Sinkowski

Committee

- G. Matt Davies
- Joe Scheeren
- Shoshanah Inwood
- Brad Bergefurd

Funders

 The Ohio Department of Agriculture

Background

- What is a pawpaw?
- Chapter 1: Variation in pawpaw (Asimina triloba L. Dunal) cultivar productivity across a biogeographic gradient
- Chapter 2: Effects of the biogeographic gradient of Ohio and ripeness spectrum on fruit quality in ten pawpaw (Asimina triloba L. Dunal) cultivars
- Conclusions

Pawpaw Trees

Pawpaw fruit

Patch of pawpaw trees

Natural range of pawpaw in North America

Chapter 1: Drivers of Yield?

Objectives

- Develop allometric relationship for pawpaw fruit
- Model total number fruit produced
- Model total fruit mass
- Model pulp mass

Methods-Site Selection

Method-Field Monitoring

Methods-Estimating Yield

- 1. Tallied fruit by size class for each tree
- 2. Allometric model to predict mass
 - Applied to size classes for each tree
 - Estimated total fruit mass
 - Estimated pulp mass
- 3. Estimated yield of each tree

Allometric Relationships

Model	Total Fruit Mass R ²	Pulp Mass R ²
Cultivar × Fruit size	0.94	0.76
Genetic Grouping × Fruit size	0.94	0.72

Total number produced by 20 cultivars

Different types of Yield models

Model	Cultivar	Group	DBH (cm)	Flower Count	R ² c	R ² m
# of Fruit	*		*	*	0.21	0.99
		*	*	*	0.20	0.97

Within a row darker colors are larger effect sizes and asterisk in block indicates significant

Total Number of Fruit

Bars with different letters are significantly different

Comparing Total Fruit Mass per tree

Bars with different letters are significantly different

Conclusions

- Allometric relationship allows for nondestructive estimation of yield
- Total number of fruit effected most by size of tree
- Total fruit mass and pulp mass effected most by flower counts
- Site effects substantial part of variance for all models

Objectives Chapter 2

Objectives

- Investigate how site, cultivar, and ripeness score effect fruit quality
- Evaluate how site, cultivar, and ripeness score effect homogeneity of fruit

What is Quality?

- What is Quality?
 - Multivariate concept of best fruit possible for the market
 - Differs for each specific market

- Is homogeneity wanted?
 - Consistency across all marketed fruit
 - Desired by distributors

Methods-Ripeness

OPGA ripeness chart developed by Terry

Powell

- Score 1 least ripe
- Score 5 most ripe

Methods-Laboratory Assessments

Fruit Quality Metrics Definitions

	•	
Quality Metric	Description	Method
Fruit Moisture	% of water in pulp	Oven Drying
Length to Width ratio	Measurement of size (%)	Measured
Weight of Pulp	Pulp weighed after skin and seeds removed	Measured
Seed to Pulp ratio	Weight of seed to weight of pulp (%)	Measured
Fruit <i>Phyllostica</i> Abundance	% of skin covered	Photographic
Skin Hardness	Force to break skin (N)	Force gauge
Flesh Hardness	Resistance to flesh puncture (N)	Force gauge
Brix	Sugar Content (°)	Refractometer
L Average Flesh	Light to dark for flesh	Colorimeter
L Average Skin	Light to dark for skin	Colorimeter
рН	Acidity level	Meter
DeltaE	Browning potential	Colorimeter

PCA of Fruit Quality Metrics

PCA-Effect of Ripeness on Fruit Quality

PCA-Effect of Site on Fruit Quality

Partitioning of Variance

Conclusions

- Predicted Total fruit mass and pulp mass show significant interaction between DBH and Flowering counts.
- Site is important factor in quality and yield
 - Cultural practices may lead to more homogenous fruit
 - More rigorous testing for some of the individual fruit metrics
 - Cultivar recommendations
 - Susquehanna and Potomac

