

Perfecting pawpaw production in Ohio Quantity and quality

Funding, helpers (Thom, etc. + UGs

Overview

Woodland production

- Yield
- Economic returns
- Stand management

Orchard production

- Establishment
- Yield
- Fruit quality
- Economic returns

Introduction

Patch of pawpaw trees

Pawpaw fruit

- Pawpaw Beer Jackie O's Brewery (Athens, OH)
- Pawpaw Pulp Integration Acres (Athens, OH)

Part I.

Woodland pawpaw production

- Yield
- Economic returns
- Stand management

Part I.

Woodland pawpaw production

Wild patch monitoring

What controls yield?

Potential Economic Return

- Woodland stand yields: ca. 900 fruit/acre trees*
- Wild fruit weight: ca. 0.2 lb
- Wild fruit pulp yield: ca. 0.1 lb/fruit
- Approx. crop value:

Wholesale: \$1/lb - Market: \$3/lb - Pulp (processed) \$8/lb

*Not necessarily an acre in area – an acre of trees would consist of ca. 530 trees at spacings we observed

Potential Economic Return

Scenario	Market Value	Net Return
Wholesale to processor	\$183	- \$294
Farmers Market	\$549	\$72
Processed pulp*	\$732	- \$111

Values and returns per acre of pawpaw patch *Excludes infrastructure and equipment

Enhancing patch productivity

Pollination experiment

Objective – do pollination limitation and self-unfruitfulness control fruit-set?

Pollination experiment

Objective – do pollination limitation and self-unfruitfulness control fruit-set?

Pollination experiment

Objective – do pollination limitation and self-unfruitfulness control fruit-set?

Improving patch production

Part II.

Orchard establishment and production

- 1. Orchard establishment
- 2. Varietal performance
 - Yield
 - Quality
- 3. Economics

Part II.

Orchard establishment and production

Experimental orchards

Experimental orchards

Percentage tree survival by stock type and system

Stelli	Input System	
Stock	Low	High
Seedling*	81	96
Bare root	65	87
Container	80	90

^{*}Also bare root but not grafted

Varietal yield and quality

Assessing yield

Assessing yield

1	Genetic Group		
	Wabash	Overleese	Susquehanna

of Fruit

Total Fruit Mass

Pulp Mass

Assessing yield

- Number of fruit affected by cultivar, tree size and flowering effort
- Fruit mass affected by group, tree size and flowering effort
- Pulp mass NOT affected by group or cultivar
- Lots of fruit v. bigger fruit?
 Know your market
- Site identity BY FAR the most important effect

Assessing fruit quality

Assessing fruit quality

Quality Metric	Description	Method
Fruit Moisture	% of water in pulp	Oven Drying
Length to Width ratio	Measurement of size (%)	Measured
Weight of Pulp	Pulp weighed after skin and seeds removed	Measured
Seed to Pulp ratio	Weight of seed to weight of pulp (%)	Measured
Fruit <i>Phyllostica</i> Abundance	% of skin covered	Photographi
Skin Hardness	Force to break skin (N)	Force gauge
Flesh Hardness	Resistance to flesh puncture (N)	Force gauge
Brix	Sugar Content(⁰)	Refractomete
L Average Flesh	Light to dark for flesh	Colorimeter
L Average Skin	Light to dark for skin	Colorimeter
рН	Acidity level	Meter
DeltaE	Browning potential	Colorimeter
Phenolics	Total Phenolic (browning) compounds present	Colorimetrio
Volume	Prolate Elliposiod	Calculated

Differences between varieties

Differences between varieties

Differences between varieties

Differences between sites

Potential Economic Return

Site	Variety	Fruit/tree
1	PA-Golden	5
1	Lynn's F	133
2	Overleese	4
2	Potomac	42
2	Quaker's D	17
3	Wells	131
4	Susquehanna	24
4	Wilson	146
5	Susquehanna	9
5	Quaker's D	46
6	NC-1-6	6
0	Rappanhannock	99

Assumes 233 trees / acre of single variety
Excluded infrastructure, equipment and start-up costs

Conclusions

- 1. Economically viable production from wild stands will require management to improve productivity
 - Thinning, grafting, supplemental planting
- 2. High input systems and minimally stressed stock maximize orchard establishment
 - Use container stock or graft in-situ
- 3. Fruit yield, quality and economic returns are highly dependent upon cultural practices and varietal selections
 - Choose high yielding, consistent varieties matched to your chosen market.
 - Maintain diverse pollination partner trees

